首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tctex1 is a light chain found in both cytoplasmic and flagellar dyneins and is involved in many fundamental cellular activities, including rhodopsin transport within photoreceptors, and may function in the non-Mendelian transmission of t haplotypes in mice. Here, we present the NMR solution structure for the Tctex1 dimer from Chlamydomonas axonemal inner dynein arm I1. Structural comparisons reveal a strong similarity with the LC8 dynein light chain dimer, including formation of a strand-switched beta sheet interface. Analysis of the Tctex1 structure enables the dynein intermediate chain binding site to be identified and suggests a mechanism by which cargo proteins might be attached to this microtubule motor complex. Comparison with the alternate dynein light chain rp3 reveals how the specificity of dynein-cargo interactions mediated by these dynein components is achieved. In addition, this structure provides insight into the consequences of the mutations found in the t haplotype forms of this protein.  相似文献   

2.
Members of the LC7/Roadblock family of light chains (LCs) have been found in both cytoplasmic and axonemal dyneins. LC7a was originally identified within Chlamydomonas outer arm dynein and associates with this motor's cargo-binding region. We describe here a novel member of this protein family, termed LC7b that is also present in the Chlamydomonas flagellum. Levels of LC7b are reduced approximately 20% in axonemes isolated from strains lacking inner arm I1 and are approximately 80% lower in the absence of the outer arms. When both dyneins are missing, LC7b levels are diminished to <10%. In oda9 axonemal extracts that completely lack outer arms, LC7b copurifies with inner arm I1, whereas in ida1 extracts that are devoid of I1 inner arms it associates with outer arm dynein. We also have observed that some LC7a is present in both isolated axonemes and purified 18S dynein from oda1, suggesting that it is also a component of both the outer arm and inner arm I1. Intriguingly, in axonemal extracts from the LC7a null mutant, oda15, which assembles approximately 30% of its outer arms, LC7b fails to copurify with either dynein, suggesting that it interacts with LC7a. Furthermore, both the outer arm gamma heavy chain and DC2 from the outer arm docking complex completely dissociate after salt extraction from oda15 axonemes. EDC cross-linking of purified dynein revealed that LC7b interacts with LC3, an outer dynein arm thioredoxin; DC2, an outer arm docking complex component; and also with the phosphoprotein IC138 from inner arm I1. These data suggest that LC7a stabilizes both the outer arms and inner arm I1 and that both LC7a and LC7b are involved in multiple intradynein interactions within both dyneins.  相似文献   

3.
Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum.  相似文献   

4.
The cytoplasmic dynein light chain Tctex1 is a candidate for one of the distorter products involved in the non-Mendelian transmission of mouse t haplotypes. It has been unclear, however, how the t-specific mutations in this protein, which is found associated with cytoplasmic dynein in many tissues, could result in a male germ cell–specific phenotype. Here, we demonstrate that Tctex1 is not only a cytoplasmic dynein component, but is also present both in mouse sperm and Chlamydomonas flagella. Genetic and biochemical dissection of the Chlamydomonas flagellum reveal that Tctex1 is a previously undescribed component of inner dynein arm I1. Combined with the recent identification of another putative t complex distorter, Tctex2, within the outer dynein arm, these results support the hypothesis that transmission ratio distortion (meiotic drive) of mouse t haplotypes involves dysfunction of both flagellar inner and outer dynein arms but does not require the cytoplasmic isozyme.  相似文献   

5.
The Tctex1/Tctex2 family of dynein light chains associates with the intermediate chains at the base of the soluble dynein particle. These components are essential for dynein assembly and participate in specific motor-cargo interactions. To further address the role of these light chains in dynein activity, the structural and biochemical properties of several members of this polypeptide class were examined. Gel filtration chromatography and native gel electrophoresis indicate that recombinant Chlamydomonas flagellar Tctex1 exists as a dimer in solution. Furthermore, yeast two-hybrid analysis suggests that this association also occurs in vivo. In contrast, both murine and Chlamydomonas Tctex2 are monomeric. To investigate protein-protein interactions involving these light chains, outer arm dynein from Chlamydomonas flagella was cross-linked using dimethylpimelimidate. Immunoblot analysis of the resulting products revealed the interaction of LC2 (Tctex2) with LC6, which is closely related to the highly conserved LC8 protein found in many enzyme systems, including dynein. Northern dot blot analysis demonstrated that Tctex1/Tctex2 family light chains are differentially expressed both in a tissue-specific and developmentally regulated manner in humans. These data provide further support for the existence of functionally distinct populations of cytoplasmic dynein with differing light chain content.  相似文献   

6.
The highly conserved LC8/DYNLL family proteins were originally identified in axonemal dyneins and subsequently found to function in multiple enzyme systems. Genomic analysis uncovered a third member (LC10) of this protein class in Chlamydomonas. The LC10 protein is extracted from flagellar axonemes with 0.6 M NaCl and cofractionates with the outer dynein arm in sucrose density gradients. Furthermore, LC10 is specifically missing only from axonemes of those strains that fail to assemble outer dynein arms. Previously, the oda12-1 insertional allele was shown to lack the Tctex2-related dynein light chain LC2. The LC10 gene is located approximately 2 kb from that of LC2 and is also completely missing from this mutant but not from oda12-2, which lacks only the 3' end of the LC2 gene. Although oda12-1 cells assemble outer arms that lack only LC2 and LC10, this strain exhibits a flagellar beat frequency that is consistently less than that observed for strains that fail to assemble the entire outer arm and docking complex (e.g., oda1). These results support a key regulatory role for the intermediate chain/light chain complex that is an integral and highly conserved feature of all oligomeric dynein motors.  相似文献   

7.
In many organisms, depolarizing stimuli cause an increase in intraciliary Ca2+, which results in reversal of ciliary beat direction and backward swimming. The mechanism by which an increase in intraciliary Ca2+ causes ciliary reversal is not known. Here we show that Tetrahymena cells treated with okadaic acid or cantharidin to inhibit protein phosphatases do not swim backwards in response to depolarizing stimuli. We also show that both okadaic acid and cantharidin inhibit backward swimming in reactivated, extracted cell models treated with Ca2+. In contrast, treatment of whole cells or extracted cell models with protein kinase inhibitors has no effect on backward swimming. These results suggest that a component of the axonemal machinery is dephosphorylated during ciliary reversal. The phosphorylation state of inner arm dynein 1 (I1) was determined before and after cells were exposed to depolarizing conditions that induce ciliary reversal. An I1 intermediate chain is phosphorylated in forward swimming cells but is dephosphorylated in cells treated with a depolarizing stimulus. Our results suggest that dephosphorylation of Tetrahymena inner arm dynein 1 may be an essential part of the mechanism of ciliary reversal in response to increased intraciliary Ca2+.  相似文献   

8.
Using proteomic and immunochemical techniques, we have identified the light and intermediate chains (IC) of outer arm dynein from sperm axonemes of the ascidian Ciona intestinalis. Ciona outer arm dynein contains six light chains (LC) including a leucine-rich repeat protein, Tctex1- and Tctex2-related proteins, a protein similar to Drosophila roadblock and two components related to Chlamydomonas LC8. No LC with thioredoxin domains is included in Ciona outer arm dynein. Among the five ICs in Ciona, three are orthologs of those in sea urchin dynein: two are WD-repeat proteins and the third one, unique to metazoan sperm flagella, contains both thioredoxin and nucleoside diphosphate kinase modules. The remaining two Ciona ICs have extensive coiled coil structure and show sequence similarity to outer arm dynein docking complex protein 2 (DC2) that was first identified in Chlamydomonas flagella. We recently identified a third DC2-like protein with coiled coil structure, Ci-Axp66.0 that is also associated in substoichiometric amounts with Ciona outer arm dynein. In addition, Oda5p, a component of an additional complex required for assembly of outer arm dynein in Chlamydomonas flagella, also groups with this family of DC2-like proteins. Thus, the assembly of outer arm dynein onto doublet microtubules involves multiple coiled-coil proteins related to DC2.  相似文献   

9.
When the motility of sperm is activated, only one light chain of flagellar outer arm dynein is phosphorylated in many organisms. We show here that the light chain to be phosphorylated was shown to be light chain 2 (LC2) in rainbow trout and chum salmon sperm and LC1 in sea urchin sperm. Molecular analyses of the phosphorylated light chains from sperm flagella of the salmonid fishes and sea urchin revealed that the light chains are homologs of the mouse t complex-encoded protein Tctex2, which is one of the putative t complex distorters. These results suggest that mouse Tctex2 might also be a light chain of flagellar outer arm dynein and that the abortive phosphorylation of Tctex2/outer arm dynein light chain might be related to the less progressive movement of sperm.  相似文献   

10.
Tctex2 is thought to be one of the distorter genes of the mouse t haplotype. This complex greatly biases the segregation of the chromosome that carries it such that in heterozygous +/t males, the t haplotype is transmitted to >95% of the offspring, a phenomenon known as transmission ratio distortion. The LC2 outer dynein arm light chain of Chlamydomonas reinhardtii is a homologue of the mouse protein Tctex2. We have identified Chlamydomonas insertional mutants with deletions in the gene encoding LC2 and demonstrate that the LC2 gene is the same as the ODA12 gene, the product of which had not been identified previously. Complete deletion of the LC2/ODA12 gene causes loss of all outer arms and a slow jerky swimming phenotype. Transformation of the deletion mutant with the cloned LC2/ODA12 gene restores the outer arms and rescues the motility phenotype. Therefore, LC2 is required for outer arm assembly. The fact that LC2 is an essential subunit of flagellar outer dynein arms allows us to propose a detailed mechanism whereby transmission ratio distortion is explained by the differential binding of mutant (t haplotype encoded) and wild-type dyneins to the axonemal microtubules of t-bearing or wild-type sperm, with resulting differences in their motility.  相似文献   

11.
Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein—a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both α- and β-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility.  相似文献   

12.
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.  相似文献   

13.
Yamamoto R  Yanagisawa HA  Yagi T  Kamiya R 《FEBS letters》2006,580(27):6357-6360
To elucidate the subunit composition of axonemal inner-arm dynein, we examined a 38 kDa protein (p38) co-purified with a Chlamydomonas inner arm subspecies, dynein d. We found it is a novel protein conserved among a variety of organisms with motile cilia and flagella. Immunoprecipitation using specific antibody verified its association with a heavy chain, actin and a previously identified light chain (p28). Unexpectedly, mutant axonemes lacking dynein d and other dyneins retained reduced amounts of p38. This finding suggests that p38 is involved in the docking of dynein d to specific loci.  相似文献   

14.
Inner dynein arms, but not outer dynein arms, require the activity of KHP1(FLA10) to reach the distal part of axonemes before binding to outer doublet microtubules. We have analyzed the rescue of inner or outer dynein arms in quadriflagellate dikaryons by immunofluorescence microscopy of p28(IDA4), an inner dynein arm light chain, or IC69(ODA6), an outer dynein arm intermediate chain. In dikaryons two strains with different genetic backgrounds share the cytoplasm. As a consequence, wild-type axonemal precursors are transported to and assembled in mutant axonemes to complement the defects. The rescue of inner dynein arms containing p28 in ida4-wild-type dikaryons progressively occurred from the distal part of the axonemes and with time was extended towards the proximal part. In contrast, the rescue of outer dynein arms in oda2-wild-type dikaryons progressively occurred along the entire length of the axoneme. Rescue of inner dynein arms containing p28 in ida4fla10-fla10 dikaryons was similar to the rescue observed in ida4-wild-type dikaryons at 21 degrees C, whereas it was inhibited at 32 degrees C, a nonpermissive temperature for KHP1(FLA10). In contrast, rescue of outer dynein arms in oda2fla10-fla10 dikaryons was similar to the rescue observed in oda2-wild-type dikaryons at both 21 degrees and 32 degrees C and was not inhibited at 32 degrees C. Positioning of substructures in the internal part of the axonemal shaft requires the activity of kinesin homologue protein 1.  相似文献   

15.
We previously found that a mutation at the ODA7 locus in Chlamydomonas prevents axonemal outer row dynein assembly by blocking association of heavy chains and intermediate chains in the cytoplasm. We have now cloned the ODA7 locus by walking in the Chlamydomonas genome from nearby molecular markers, confirmed the identity of the gene by rescuing the mutant phenotype with genomic clones, and identified the ODA7 gene product as a 58-kDa leucine-rich repeat protein unrelated to outer row dynein LC1. Oda7p is missing from oda7 mutant flagella but is present in flagella of other outer row or inner row dynein assembly mutants. However, Oda7 levels are greatly reduced in flagella that lack both outer row dynein and inner row I1 dynein. Biochemical fractionation and rebinding studies support a model in which Oda7 participates in a previously uncharacterized structural link between inner and outer row dyneins.  相似文献   

16.
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.  相似文献   

17.
The haploid germ cell-specific Tektin-t protein is a member of the Tektin family of proteins that form filaments in flagellar, ciliary, and axonemal microtubules. To investigate the physiological role of Tektin-t, we generated mice with a mutation in the tektin-t gene. The homozygous mutant males were infertile, while the females were fully fertile. Sperm morphology and function were abnormal, with frequent bending of the sperm flagella and marked defects in motility. In vitro fertilization assays showed that the defective spermatozoa were able to fertilize eggs. Electron microscopic examination showed that the dynein inner arm structure was disrupted in the sperm flagella of tektin-t-deficient mice. Furthermore, homozygous mutant mice had functionally defective tracheal cilia, as evidenced by altered dynein arm morphology. These results indicate that Tektin-t participates in dynein inner arm formation or attachment and that the loss of Tektin-t results in impaired motility of both flagella and cilia. Therefore, the tektin-t gene is one of the causal genes for immotile-cilium syndrome/primary ciliary dyskinesia.  相似文献   

18.
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.  相似文献   

19.
We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2.  相似文献   

20.
The flagellated eukaryote Trypanosoma brucei alternates between the insect vector and the mammalian host and proliferates through an unusual mode of cell division. Cell division requires flagellum motility‐generated forces, but flagellum motility exerts distinct effects between different life cycle forms. Motility is required for the final cell abscission of the procyclic form in the insect vector, but is necessary for the initiation of cell division of the bloodstream form in the mammalian host. The underlying mechanisms remain elusive. Here we carried out functional analyses of a flagellar axonemal inner‐arm dynein complex in the bloodstream form and investigated its mechanistic role in cytokinesis initiation. We showed that the axonemal inner‐arm dynein heavy chain TbIAD5‐1 and TbCentrin3 form a complex, localize to the flagellum, and are required for viability in the bloodstream form. We further demonstrated the interdependence between TbIAD5‐1 and TbCentrin3 for maintenance of protein stability. Finally, we showed that depletion of TbIAD5‐1 and TbCentrin3 arrested cytokinesis initiation and disrupted the localization of multiple cytokinesis initiation regulators. These findings identified the essential role of an axonemal inner‐arm dynein complex in cell division, and provided molecular insights into the flagellum motility‐mediated cytokinesis initiation in the bloodstream form of T. brucei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号