首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气候变化对野生植物的影响及保护对策   总被引:2,自引:0,他引:2  
黎磊  陈家宽 《生物多样性》2014,22(5):549-1609
以温室气体浓度持续上升、全球气候变暖为主要特征的全球气候变化对野生植物及生物多样性造成的潜在影响, 已经引起了国际学者的高度关注。本文总结了全球气候变化的现状与未来趋势, 概述了中国野生植物的保护及管理现状, 从不同侧面综述了国内外关于全球气候变暖对野生植物影响的研究进展和动态, 包括气候带北移、两极冰山退缩、高海拔山地变暖、海平面上升、早春温度提前升高、荒漠草原土壤增温、旱涝急转弯等对野生植物造成的影响以及气候变暖对种间关系和敏感植物类群的影响, 并从气候变化背景下全球生态系统敏感度、植物多样性、物种迁移与气候槽(sink areas)、物种适应与灭绝以及物候节律5个方面分析了未来全球变暖影响野生植物的总体趋势。在以后的野生植物保护与管理中, 应确定全球气候变化的植物多样性敏感区, 重点关注对气候变化敏感的植物类群以及气候要素改变植物-动物互作关系中的野生植物, 自然保护区的建设要重点考虑全球气候变化的影响, 通过在全球范围内对野生植物分布和种群变化进行长期、系统的追踪监测, 建立有效的数据库, 发展野生植物迁地保护的保育技术及信息网络, 发展有关野生植物对全球气候变化响应的量化指标及相应的模型。最后提出应将全球气候变化下野生植物保护与管理列入相关基金会的研究重点。  相似文献   

2.
Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.  相似文献   

3.
蝴蝶对全球气候变化响应的研究综述   总被引:2,自引:0,他引:2  
全球气候变化以及生物对其响应已引起人们的广泛关注。在众多生物中,蝴蝶被公认为是对全球气候变化最敏感的指示物种之一。已有大量的研究结果表明,蝴蝶类群已经在地理分布范围、生活史特性以及生物多样性变化等方面对全球气候变化作出了响应。根据全球范围内蝴蝶类群对气候变化响应的研究资料,尤其是欧美一些长期监测的研究成果,综述了蝴蝶类群在物种分布格局、物候、繁殖、形态特征变化、种群动态以及物种多样性变化等方面对气候变化的响应特征,认为温度升高和极端天气是导致蝴蝶物种分布格局和种群动态变化的主要因素。在此基础上,展望了我国开展蝴蝶类群对气候变化响应方面研究的未来发展趋势。  相似文献   

4.
Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad‐scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment‐only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment‐only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions.  相似文献   

5.
Aim Existing climate envelope models give an indication of broad scale shifts in distribution, but do not specifically provide information on likely future population changes useful for conservation prioritization and planning. We demonstrate how these techniques can be developed to model likely future changes in absolute density and population size as a result of climate change. Location Great Britain. Methods Generalized linear models were used to model breeding densities of two northerly‐ and two southerly‐distributed bird species as a function of climate and land use. Models were built using count data from extensive national bird monitoring data and incorporated detectability to estimate absolute abundance. Projections of likely future changes in the distribution and abundance of these species were made by applying these models to projections of future climate change under two emissions scenarios. Results Models described current spatial variation in abundance for three of the four species and produced modelled current estimates of national populations that were similar to previously published estimates for all species. Climate change was projected to result in national population declines in the two northerly‐distributed species, with declines for Eurasian curlew Numenius arquata projected to be particularly severe. Conversely, the abundances of the two southerly distributed species were projected to increase nationally. Projected maps of future abundance may be used to identify priority areas for the future conservation of each species. Main conclusions The analytical methods provide a framework to make projections of impacts of climate change on species abundance, rather than simply projected range changes. Outputs may be summarized at any spatial scale, providing information to inform future conservation planning at national, regional and local scales. Results suggest that as a consequence of climate change, northerly distributed bird species in Great Britain are likely to become an increasingly high conservation priority within the UK.  相似文献   

6.
The survival of an increasing number of species is threatened by climate change: 20%–30% of plants and animals seem to be at risk of range shift or extinction if global warming reaches levels projected to occur by the end of this century. Plant range shifts may determine whether animal species that rely on plant availability for food and shelter will be affected by new patterns of plant occupancy and availability. Brown bears in temperate forested habitats mostly forage on plants and it may be expected that climate change will affect the viability of the endangered populations of southern Europe. Here, we assess the potential impact of climate change on seven plants that represent the main food resources and shelter for the endangered population of brown bears in the Cantabrian Mountains (Spain). Our simulations suggest that the geographic range of these plants might be altered under future climate warming, with most bear resources reducing their range. As a consequence, this brown bear population is expected to decline drastically in the next 50 years. Range shifts of brown bear are also expected to displace individuals from mountainous areas towards more humanized ones, where we can expect an increase in conflicts and bear mortality rates. Additional negative effects might include: (a) a tendency to a more carnivorous diet, which would increase conflicts with cattle farmers; (b) limited fat storage before hibernation due to the reduction of oak forests; (c) increased intraspecific competition with other acorn consumers, that is, wild ungulates and free‐ranging livestock; and (d) larger displacements between seasons to find main trophic resources. The magnitude of the changes projected by our models emphasizes that conservation practices focused only on bears may not be appropriate and thus we need more dynamic conservation planning aimed at reducing the impact of climate change in forested landscapes.  相似文献   

7.
The impacts of climate change in coastal marine systems   总被引:14,自引:0,他引:14  
Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.  相似文献   

8.
生物多样性正面临快速丧失的风险, 气候和土地利用变化已成为生物多样性的主要威胁之一。受威胁物种名录是区域和全球生物多样性保护的重要基础数据, 也是保护区规划的基础。作为一个生物多样性大国, 中国已开展了高等植物受威胁状况的系统性评估, 建立了受威胁植物名录, 为植物多样性保护规划提供了支撑。但由于数据和方法限制, 现有受威胁植物名录制定时未定量考虑全球变化对植物分布的潜在影响, 因而可能低估物种的受威胁等级及未来生物多样性的丧失风险。本研究基于高精度的木本植物分布数据和物种分布模型, 评估了未来气候和土地利用变化对木本植物分布的潜在影响。基于每个物种适宜分布区大小的变化, 并依据IUCN红色名录评估指标A3c的阈值标准, 更新了木本植物的受威胁等级, 补充了未来中国潜在受威胁木本植物名录。结果显示: 综合不同的气候变化情景(RCP 2.6、RCP 6.0和RCP 8.5)和扩散情景(完全扩散、20 km/10年、不扩散), 约12.9%-40.5%的木本植物被评估为受威胁物种。该名录将为制定木本植物保护优先级、开展保护区规划、提升全球变化情景下的生物多样性保护成效提供基础数据, 也为其他类群制定全面的受威胁物种名录提供参考。  相似文献   

9.
Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.  相似文献   

10.
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas.  相似文献   

11.
There is ample evidence for species distributional changes in response to recent climate change, but most studies are biased toward better known taxa. Thus, an integrated approach is needed that includes the “cryptic diversity” represented partly by lichens, which are among the most sensitive organisms to environmental change due to their physiological characteristics. The use of functional traits and ecological attributes may improve the interpretation of how species respond to climate change. Thus, we quantified the future climate change impacts on 41 lichen species distributed in the Iberian Peninsula using ensemble climatic suitability maps (derived from generalized linear and generalized additive models, and classification and regression tree analysis) and different metrics. We also determined the lichen traits/attributes that might be related to a shared response to climate change. The results indicated a loss of bioclimatic space for 75% of the species studied and an increase for 10 species, especially in Mediterranean ones. Most of the species that will lose more than 70% of their current modeled distribution area comprised big macrolichens with cyanobacteria as the photobiont, thereby indicating a great biomass loss in forests, which might affect nutrient cycles. We also found that the predicted distributions were trait-related. Smaller species, green-algae lichens, and saxicolous and epiphyte species will respond better to future climate change. The results of this type of study may help to identify the species that are most vulnerable to climate change and facilitate the development of conservation measures to avoid their decline.  相似文献   

12.
Human-induced climate change poses many potential threats to nonhuman primate species, many of which are already threatened by human activities such as deforestation, hunting, and the exotic pet trade. Here, we assessed the exposure and potential vulnerability of all nonhuman primate species to projected future temperature and precipitation changes. We found that overall, nonhuman primates will experience 10 % more warming than the global mean, with some primate species experiencing >1.5 °C for every °C of global warming. Precipitation changes are likely to be quite varied across primate ranges (from >7.5 % increases per °C of global warming to >7.5 % decreases). We also identified individual endangered species with existing vulnerabilities (owing to their small range areas, specialized diet, or restricted habitat use) that are expected to experience the largest climate changes. Finally, we defined hotspots of primate vulnerability to climate changes as areas with many primate species, high concentrations of endangered species, and large expected climate changes. Although all primate species will experience substantial changes from current climatic conditions, our hotspot analysis suggests that species in Central America, the Amazon, and southeastern Brazil, as well as portions of East and Southeast Asia, may be the most vulnerable to the anticipated impacts of global warming. It is essential that impacts of human-induced climate change be a priority for research and conservation planning in primatology, particularly for species that are already threatened by other human pressures. The vulnerable species and regional hotspots that we identify here represent critical priorities for conservation efforts, as existing challenges are expected to become increasingly compounded by the impacts of global warming.  相似文献   

13.
Coincident with recent global warming, species have shifted their geographic distributions to cooler environments, generally by moving along thermal axes to higher latitudes, higher elevations or deeper waters. While these shifts allow organisms to track their thermal niche, these three thermal axes also covary with non-climatic abiotic factors that could pose challenges to range-shifting plants and animals. Such novel abiotic conditions also present an unappreciated pitfall for researchers – from both empirical and predictive viewpoints – who study the redistribution of species under global climate change. Climate, particularly temperature, is often assumed to be the primary abiotic factor in limiting species distributions, and decades of thermal biology research have made the correlative and mechanistic understanding of temperature the most accessible and commonly used response to any abiotic factor. Receiving far less attention, however, is that global gradients in oxygen, light, pressure, pH and water availability also covary with latitude, elevation, and/or ocean depth, and species show strong physiological and behavioral adaptations to these abiotic variables within their historic ranges. Here, we discuss how non-climatic abiotic factors may disrupt climate-driven range shifts, as well as the variety of adaptations species use to overcome abiotic conditions, emphasizing which taxa may be most limited in this capacity. We highlight the need for scientists to extend their research to incorporate non-climatic, abiotic factors to create a more ecologically relevant understanding of how plants and animals interact with the environment, particularly in the face of global climate change. We demonstrate how additional abiotic gradients can be integrated into global climate change biology to better inform expectations and provide recommendations for addressing the challenge of predicting future species distributions in novel environments.  相似文献   

14.
Regional anthropogenic processes such as pollution, dredging, and overfishing on coral reefs currently threaten the biodiversity of stony corals and other reef-associated organisms. Global climate change may interact with anthropogenic processes to create additional impacts on coral diversity in the near future. In order to predict these changes, it is necessary to understand the magnitude and causes of variation in scleractinian coral diversity throughout their 240 million year history. The fossil record documents long periods of speciation in corals, interrupted repeatedly by events of mass extinction. Some of these events relate clearly to changes in global climate. Diversity in reef corals has increased since their last period of extinction at the end of the Cretaceous (65 My bp ), and is still rising. During the last 8 million years, the fragmentation of the once pantropical Tethys Sea separated corals into two major biogeographical provinces. Periods of glaciation also have caused major changes in sea level and temperature. Accumulated evidence supports the theory that relative habitat area and changing patterns of oceanic circulation are mainly responsible for the two observed centres of recent coral diversity at the western tropical margins of the Atlantic and Pacific oceans. At predicted rates of climate change in the near future, coral reefs are likely to survive as an ecosystem. Increases in sea level may actually benefit corals and lead to regional increases in diversity if new habitat area on back reefs is opened to increased water circulation and thus coral dispersal. Rising temperature may cause higher rates of coral mortality and even local extinction in isolated, small populations such as those on oceanic islands. The effects of increases in ultraviolet radiation (UV) are largely unknown, but likely to be negative. UV may damage planktonic coral propagules in oceanic surface waters and thus decrease rates of gene flow between coral populations. This may result in increased local extinctions, again with the strongest impact on widely separated reefs with small coral populations. The largest threats to coral diversity are regional anthropogenic impacts, which may interact with global climate change to exacerbate rates of local species extinctions. Centres of high reef coral diversity coincide with human population centres in south-east Asia and the Caribbean, and thus the greatest potential for species loss lies in these geographical areas.  相似文献   

15.
Abstract. Palaeoecologists have shown that trees migrated at rates of 100–1000 m/yr in response to post-glacial warming. In order to predict the impact of forecast anthropogenic climate changes upon forest ecosystems we need to simulate how trees may migrate in response to the changes predicted for the next 1–2 centuries. These predictions must take account of the impacts upon migration of human land-use and habitat fragmentation. We have developed a spatially-explicit mechanistic model (MIGRATE) able to simulate the migration of a single species across a realistically heterogeneous landscape. MIGRATE uses biological parameters that readily may be estimated from data in the literature or from field studies, and represents the landscape as a grid of cells, each with an associated carrying capacity. A one-dimensional version of MIGRATE has been compared both with Skellam's (1951) diffusion model and with the more recent analytical models of van den Bosch et al. (1990, 1992); despite its fundamentally different approach, MIGRATE provides comparable estimates of migration rates, given equivalent input parameters. An example is described that demonstrates the ability of the two-dimensional version of MIGRATE to simulate the likely pattern of spread of a species across a heterogeneous landscape. It is argued that MIGRATE, or models like it, will play a central role in a spatially-hierarchic modelling strategy that must be developed if we are to achieve the goal of simulating the likely response of trees, and other organisms, to both global climate change and the increasing pressures of human land-use.  相似文献   

16.
Natural resources managers are being asked to follow practices that accommodate for the impact of climate change on the ecosystems they manage, while global‐ecosystems modelers aim to forecast future responses under different climate scenarios. However, the lack of scientific knowledge about short‐term ecosystem responses to climate change has made it difficult to define set conservation practices or to realistically inform ecosystem models. Until recently, the main goal for ecologists was to study the composition and structure of communities and their implications for ecosystem function, but due to the probable magnitude and irreversibility of climate‐change effects (species extinctions and loss of ecosystem function), a shorter term focus on responses of ecosystems to climate change is needed. We highlight several underutilized approaches for studying the ecological consequences of climate change that capitalize on the natural variability of the climate system at different temporal and spatial scales. For example, studying organismal responses to extreme climatic events can inform about the resilience of populations to global warming and contribute to the assessment of local extinctions. Translocation experiments and gene expression are particular useful to quantitate a species' acclimation potential to global warming. And studies along environmental gradients can guide habitat restoration and protection programs by identifying vulnerable species and sites. These approaches identify the processes and mechanisms underlying species acclimation to changing conditions, combine different analytical approaches, and can be used to improve forecasts of the short‐term impacts of climate change and thus inform conservation practices and ecosystem models in a meaningful way.  相似文献   

17.
Broad‐scale assessments of how climate change might impact mountain ecosystems, especially in areas of high biodiversity and endemism, are compromised by the lack of localised climate feedback in global circulation models. Here, we use regionally downscaled climate models to highlight how spatial variation in forecast change could impact rare plant distributions differentially across the Eastern Arc Mountains of Tanzania and Kenya, part of the Eastern Afromontane Biodiversity Hotspot. Concordant with the theory that climatic stability facilitates the accumulation of rare species, we find significant positive correlations between endemic plant richness and future climatic persistence within the dispersal‐limiting sky islands of this mountain archipelago. Further, we explore the hypothesis that mountain plants will move upslope in response to climate change and find that, conversely, some species are predicted to tend downslope, despite warmer annual conditions, driven by changes in seasonality and water availability. Importantly, two thirds of the modelled plant species are predicted to respond in different directions in different parts of their ranges, exemplifying the potential for individualistic responses of species and disjunct populations to environmental change, and the need for regional focus in climate change impact assessment. Conservation planners, and more broadly those charged with developing climate adaption policy, are advised to take caution in inferring local patterns of change from zoomed perspectives of broad‐scale models. Moreover, a preoccupation with mean annual temperature as the principal driver of ecosystem change is misguided and could compromise efforts to make conservation plans resilient to future climate change. Faced with spatially complex and inherently uncertain future conditions, sensible priorities are to restore forest connectivity and to underpin adaption strategies with knowledge of how ecosystems and people have adapted to previous episodes of rapid change.  相似文献   

18.
Habitat management under the auspices of conservation biological control is a widely used approach to foster conditions that ensure a diversity of predator species can persist spatially and temporally within agricultural landscapes in order to control their prey (pest) species. However, an emerging new factor, global climate change, has the potential to disrupt existing conservation biological control programs. Climate change may alter abiotic conditions such as temperature, precipitation, humidity and wind that in turn could alter the life-cycle timing of predator and prey species and the behavioral nature and strength of their interactions. Anticipating how climate change will affect predator and prey communities represents an important research challenge. We present a conceptual framework—the habitat domain concept—that is useful for understanding contingencies in the nature of predator diversity effects on prey based on predator and prey spatial movement in their habitat. We illustrate how this framework can be used to forecast whether biological control by predators will become more effective or become disrupted due to changing climate. We discuss how changes in predator–prey interactions are contingent on the tolerances of predators and prey species to changing abiotic conditions as determined by the degree of local adaptation and phenotypic plasticity exhibited by species populations. We conclude by discussing research approaches that are needed to help adjust conservation biological control management to deal with a climate future.  相似文献   

19.
The role of infectious diseases in biological conservation   总被引:1,自引:0,他引:1  
Recent increases in the magnitude and rate of environmental change, including habitat loss, climate change and overexploitation, have been directly linked to the global loss of biodiversity. Wildlife extinction rates are estimated to be 100–1000 times greater than the historical norm, and up to 50% of higher taxonomic groups are critically endangered. While many types of environmental changes threaten the survival of species all over the planet, infectious disease has rarely been cited as the primary cause of global species extinctions. There is substantial evidence, however, that diseases can greatly impact local species populations by causing temporary or permanent declines in abundance. More importantly, pathogens can interact with other driving factors, such as habitat loss, climate change, overexploitation, invasive species and environmental pollution to contribute to local and global extinctions. Regrettably, our current lack of knowledge about the diversity and abundance of pathogens in natural systems has made it difficult to establish the relative importance of disease as a significant driver of species extinction, and the context when this is most likely to occur. Here, we review the role of infectious diseases in biological conservation. We summarize existing knowledge of disease-induced extinction at global and local scales and review the ecological and evolutionary forces that may facilitate disease-mediated extinction risk. We suggest that while disease alone may currently threaten few species, pathogens may be a significant threat to already-endangered species, especially when disease interacts with other drivers. We identify control strategies that may help reduce the negative effects of disease on wildlife and discuss the most critical challenges and future directions for the study of infectious diseases in the conservation sciences.  相似文献   

20.
Ongoing global climate change presents serious challenges in conservation biology, forcing us to revisit previous tools and principles based on how species may respond to novel climatic conditions. There is currently a major gap between predictions of species vulnerability and management strategies, despite the fact that linking these areas is fundamental for future biodiversity conservation. Herein, we evaluate what drives vulnerability to climate change in three Iberian endemic water beetles, representing three independent colonizations of the same habitat, employing comparative thermal physiology, species distribution models and estimations of species dispersal capacity. We derive conservation strategies for each species based on their differential capacity to persist and/or potential to shift their ranges in response to global warming. We demonstrate that species may be affected by climatic warming in very different ways, despite having broadly similar ecological and biogeographical traits. The proposed framework provides an effective complement to traditional species vulnerability assessments, and could aid the development of more effective conservation strategies in the face of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号