首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Tocopherols (α-, β-, γ- and δ-tocopherols) represent a group of lipophilic antioxidants which are synthesized only by photosynthetic organisms. It is widely believed that protection of pigments and proteins of photosynthetic system and polyunsaturated fatty acids from oxidative damage caused by reactive oxygen species (ROS) is the main function of tocopherols. The wild type Columbia and two mutants of Arabidopsis thaliana with T-DNA insertions in tocopherol biosynthesis genes – tocopherol cyclase (vte1) and γ-tocopherol methyltransferase (vte4) – were analyzed after long-term outdoor growth. The concentration of total tocopherol was up to 12-fold higher in outdoor growing wild type and vte4 plant lines than in plants grown under laboratory conditions. The vte4 mutant plants had a lower concentration of chlorophylls and carotenoids, whereas the mutant plants had a higher level of total glutathione than of wild type. The activities of antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate oxidase (AO, EC 1.10.3.3) were lower in both mutants, whereas activities of catalase (EC 1.11.1.6) and ascorbate peroxidase (APx, EC 1.11.1.11) were lower only in vte1 mutant plants in comparison to wild type plants. However, the activity of guaiacol peroxidase (GuPx, EC 1.11.1.7) was higher in vte1 and vte4 mutants than that in wild type. Additionally, both mutant plant lines had higher concentration of protein carbonyl groups and oxidized glutathione compared to the wild type, indicating the development of oxidative stress. These results demonstrate in plants that tocopherols play a crucial role for growth of plants under outdoor conditions by preventing oxidation of cellular components.  相似文献   

5.
The effects of jasmonic acid (JA) and abscisic aid (ABA) on secondary metabolism in barley (Hordeum vulgare L.) were investigated. Treatment with JA at 100 microM for 48 h induced accumulation of four compounds in barley primary leaves. The accumulation of these compounds was also observed after treatment with ABA at 100 microM. The induced compounds were identified as p-coumaroylputrescine, p-coumaroylagmatine, p-coumaroyl-3-hydroxyagmatine and tryptophan by spectroscopic methods. The profiles of compounds induced by application of JA and ABA were different. JA exhibited stronger inducing activity for hydroxycinnamic acid amides than ABA, while ABA was more active in tryptophan accumulation. The major hydroxycinnamic acid amides in JA- and ABA-treated leaves were p-coumaroylagmatine and p-coumaroyl-3-hydroxyagmatine, respectively. These differences suggested that JA and ABA act in distinct modes. The induction of these compounds was also observed in leaf segments treated with 1 M sorbitol and glucose. These findings suggested that JA and ABA are involved in accumulation of hydroxycinnamic acid amides and tryptophan in response to osmotic stress in barley.  相似文献   

6.
Plant responses to abiotic stress include various modifications in amino acid metabolism. By using a hydroponic culture system, we systematically investigate modification in amino acid profiles and the proteome of Arabidopsis thaliana leaves during initial recovery from low water potential or high salinity. Both treatments elicited oxidative stress leading to a biphasic stress response during recovery. Degradation of highly abundant proteins such as subunits of photosystems and ribosomes contributed to an accumulation of free amino acids. Catabolic pathways for several low abundant amino acids were induced indicating their usage as an alternative respiratory substrate to compensate for the decreased photosynthesis. Our results demonstrate that rapid detoxification of potentially detrimental amino acids such as Lys is a priority during the initial stress recovery period. The content of Pro, which acts as a compatible osmolyte during stress, was adjusted by balancing its synthesis and catabolism both of which were induced both during and after stress treatments. The production of amino acid derived secondary metabolites was up‐regulated specifically during the recovery period, and our dataset also indicates increased synthesis rates of the precursor amino acids. Overall, our results support a tight relationship between amino acid metabolism and stress responses.  相似文献   

7.
8.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

9.
10.
The chloramphenicol acetyltransferase gene cat-86 is induced through a mechanism that is a variation of classical attenuation. Induction results from the destabilization of an RNA stem-loop that normally sequesters the cat-86 ribosome-binding site. Destabilization of the stem-loop is due to the stalling of a ribosome in the leader region of cat-86 mRNA at a position that places the A site of the stalled ribosome at leader codon 6. Two events can stall ribosomes at the correct location to induce cat-86 translation: addition of chloramphenicol to cells and starvation of cells for the amino acid specified by leader codon 6. Induction by amino acid starvation is an anomaly because translation of the cat-86 coding sequence requires all 20 amino acids. To explain this apparent contradiction we postulated that amino acid starvation triggers intracellular proteolysis, thereby providing levels of the deprived amino acid sufficient for cat-86 translation. Here we show that a mutation in relA, the structural gene for stringent factor, blocks intracellular proteolysis that is normally triggered by amino acid starvation. The relA mutation also blocks induction of cat-86 by amino acid starvation, but the mutation does not interfere with chloramphenicol induction. Induction by amino acid starvation can be demonstrated in relA mutant cells if the depleted amino acid is restored at very low levels (e.g., 2 micrograms/ml). A mutation in relC, which may be the gene for ribosomal protein L11, blocks induction of cat-86 by either chloramphenicol or amino acid starvation. We believe this effect is due to a structural alteration of the ribosome resulting from the relC mutation and not to the relaxed phenotype of the cells.  相似文献   

11.
D-amino acid were searched in wilted tomato leaves. D-Isomers of free amino acids were not revealed by the treatment with L- and D-amino acid oxidases. The noncationic fraction of the extract contained N-malonyl-D-tryptophan and no other N-acylated amino acids. A special search for endogenous N-malonyl-D-phenylalanine gave negative results. Exogenous14C-malonate was only incorporated in one Chromatographic zone corresponding to N-malonyl-D-tryptophan. It is concluded that drought stress does not induce the appearance of D-amino acids except for D-tryptophan which is accumulated in the malonylated form.  相似文献   

12.
The glucan elicitor from cell walls of the fungal pathogen, Phytophthora megasperma f. sp. glycinea, induced rapid but transient increases in enzyme activities of general phenylpropanoid metabolism (phenylalanine ammonia-lyase and 4-coumarate: CoA ligase) and of the flavonoid pathway (chalcone synthase) in cell suspension cultures of soybean (Glycine max). After transferring cells into fresh medium, two peaks of inducibility for the enzymes by elicitor were observed, one shortly after transfer (stage I), and one at the end of the linear growth phase (stage II). Only one of the two isoenzymes of 4-coumarate: CoA ligase (isoenzyme 2), for which a specific involvement in flavonoid biosynthesis has been postulated, was affected by the elicitor. For two of the induced enzymes, phenylalanine ammonia-lyase and chalcone synthase, the changes in activity at stage I were shown to be preceded by large changes in their rates of synthesis, as determined by in vivo labelling with [35S] methionine and immunoprecipitation.Abbreviations Pmg Phytophthora megasperma f. sp. glycinea - glyceollin is a term used to designate the 3 isomers which accumulate in challenged soybean tissue (Moesta and Grisebach 1981b)  相似文献   

13.
Protracted starvation of auxotrophic Saccharomyces cerevisiae strains for an essential amino acid is commonly used to allow investigation of adaptive mutation mechanisms during starvation-induced cell cycle arrest. Under these conditions, the majority of cells dies during the first 6 days. We investigated starving cells for markers of programmed cell death and for the production of reactive oxygen species (ROS). We observed that protracted starvation for lysine or histidine resulted in an increasing number of cells exhibiting DNA fragmentation and chromatin condensation, thus an apoptotic phenotype. Not only respiration-competent cells but also respiratory deficient rho0 cells were able to undergo programmed cell death. In addition the starving cells rapidly exhibited indicators of oxidative stress, independently of their respiratory competence. These results indicate that starvation for an essential amino acid results in severe cell stress, which may finally be the trigger of programmed cell death.  相似文献   

14.
Enhanced resistance of barley (Hordeum vulgare L. cv. Ingrid) against barley powdery mildew (Blumeria graminis f. sp. hordei race A6) was induced by abiotic stress in a concentration-dependent manner. The papilla-mediated resistance was not only induced by osmotic stress, but also by proton stress. Resistance was directly correlated with increasing concentrations of various salts in the nutrient solution. Resistance induced by proton stress also depended on the stress intensity. Resistance induction occurred even at low stress intensities. Any specific ion toxicity affecting the fungal growth directly, and therefore leading to enhanced pathogen resistance, can be excluded because of the independence of resistance induction of the ion used and of the time course of sodium accumulation in the leaves. BCI-4, a marker for benzo[1,2,3]thiadiazolecarbothioic acid S-methyl ester (BTH)-induced resistance was not induced by these abiotic stresses. However, resistance was induced in the same concentration-dependent manner by the application of the stress hormone ABA to the root medium. During the relief of water stress, resistance did not decrease constantly. On the contrary, after a phase of decreasing resistance for 24 h the pathogen resistance increased again for 48 h before decreasing finally to control levels.  相似文献   

15.
Arabidopsis thaliana Stress Associated Protein 9 (AtSAP9) is a member of the A20/AN1 zinc finger protein family known to play important roles in plant stress responses and in the mammalian immune response. Although SAPs of several plant species were shown to be involved in abiotic stress responses, the underlying molecular mechanisms are largely unknown, and little is known about the involvement of SAPs in plant disease responses. Expression of SAP9 in Arabidopsis is up‐regulated in response to dehydration, cold, salinity and abscisic acid (ABA), as well as pathogen infection. Constitutive expression of AtSAP9 in Arabidopsis leads to increased sensitivity to ABA and osmotic stress during germination and post‐germinative development. Plants that overexpress AtSAP9 also showed increased susceptibility to infection by non‐host pathogen Pseudomonas syringae pv. phaseolicola, indicating a potential role of AtSAP9 in disease resistance. AtSAP9 was found to interact with RADIATION SENSITIVE23d (Rad23d), a shuttle factor for the transport of ubiquitinated substrates to the proteasome, and it is co‐localized with Rad23d in the nucleus. Thus, AtSAP9 may promote the protein degradation process by mediating the interaction of ubiquitinated targets with Rad23d. Taken together, these results indicate that AtSAP9 regulates abiotic and biotic stress responses, possibly via the ubiquitination/proteasome pathway.  相似文献   

16.
17.
Saccharomyces cerevisiae can utilize allantoin as a sole nitrogen source by degrading it in five steps to ammonia, “CO2”, and glyoxylate. We have previously shown that allophanic acid is the inducer of the urea carboxylase: allophanate hydrolase multienzyme complex. Since these enzymes catalyse the last two steps of allantoin degradation, experiments were performed to determine if allophanate was also the inducer of any other enzymes in the pathway. Our data demonstrate that allophanate induces synthesis of at least five of the seven purine degradative enzymes.  相似文献   

18.
A locus (leuK) affecting regulation of the leucine operon was selected by isolating a spontaneous Ara+ derivative of an Escherichia coli B/r strain carrying an ara-leu fusion in which the arabinose operon is under leucine control. Genetic analyses by P1 transduction demonstrated that the lesion is located to the right of the galactose operon. Regulation of the biosynthetic enzymes for leucine, isoleucine-valine, histidine, and tryptophan was altered in a strain carrying leuK16. High-level gene expression in the heterozygous merodiploid strain F' leuK+/leuK16) demonstrated the dominance of the mutant allele to the wild-type allele. No apparent effect was observed in the mutant on N-acetylornithinase, a biosynthetic enzyme in the arginine pathway, nor on any of the 18 aminoacyl-tRNA synthetases examined. However, compared with that of the parent strain, the extent of the charging of leucyl-, isoleucyl-, valyl-, histidyl-, and arginyl-tRNA was decreased in the mutant.  相似文献   

19.
Endophytes are micro‐organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions.

Significance and Impact of the Study

Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress‐tolerant plants.  相似文献   

20.
Low phosphorous availability, a common condition of many soils, is known to stimulate phosphatase activity in plants; however, the molecular details of this response remain mostly unknown. We purified and sequenced the N-terminal region of a phosphate starvation induced acid phosphatase (AtACP5) from Arabidopsis thaliana, and cloned its cDNA and the corresponding genomic DNA. The nucleotide sequence of the cDNA predicted that AtACP5 is synthesised as a 338 amino acid-long precursor with a signal peptide. AtACP5 was found to be related to known purple acid phosphatases, especially to mammal type 5 acid phosphatases. Other similarities with purple acid phosphatases, which contain a dinuclear metal centre, include the conservation of all residues involved in metal ligand binding and resistance to tartrate inhibition. In addition, AtACP5, like other type 5 acid phosphatases, displayed peroxidation activity. Northern hybridisation experiments, as well as in situ glucuronidase (GUS) activity assays on transgenic plants harbouring AtACP5:GUS translational fusions, showed that AtACP5 is not only responsive to phosphate starvation but also to ABA and salt stress. It is also expressed in senescent leaves and during oxidative stress induced by H2O2, but not by paraquat or salicylic acid. Given its bifunctionality, as it displays both phosphatase and peroxidation activity, we propose that AtACP5 could be involved in phosphate mobilisation and in the metabolism of reactive oxygen species in stressed or senescent parts of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号