首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
By using a DNA fragment of Escherichia coli ffh as a probe, the Bacillus subtilis ffh gene was cloned. The complete nucleotide sequence of the cloned DNA revealed that it contained three open reading frames (ORFs). Their order in the region, given by the gene product, was suggested to be ORF1-Ffh-S16, according to their similarity to the gene products of E. coli, although ORF1 exhibited no significant identity with any other known proteins. The orf1 and ffh genes are organized into an operon. Genetic mapping of the ffh locus showed that the B. subtilis ffh gene is located near the pyr locus on the chromosome. The gene product of B. subtilis ffh shared 53.9 and 32.6% amino acid identity with E. coli Ffh and the canine 54-kDa subunit of signal recognition particle, respectively. Although there was low amino acid identity with the 54-kDa subunit of mammalian signal recognition particle, three GTP-binding motifs in the NH2-terminal half and amphipathic helical cores in the COOH-terminus were conserved. The depletion of ffh in B. subtilis led to growth arrest and drastic morphological changes. Furthermore, the translocation of beta-lactamase and alpha-amylase under the depleted condition was also defective.  相似文献   

3.
Arcanobacterium (Actinomyces) pyogenes, a causative agent of various pyogenic diseases in domestic animals, produces a hemolysin which is thought to be an important virulence factor. This hemolysin was purified from the culture supernatant of A. pyogenes swine isolate. The purified hemolysin showed a single band with a molecular mass of 56 kDa on SDS-polyacrylamide gel electrophoresis, and its isoelectric point was 9.2. The activity of this hemolysin was not enhanced by the addition of L-cysteine or sodium thioglycolate, but it was inhibited by cholesterol. The gene encoding the hemolysin was cloned, sequenced and expressed in Escherichia coli by means of ZAP Express vector. Analysis by SDS-polyacrylamide gel electrophoresis with immunoblotting showed that the molecular weight of the hemolysin expressed in E. coli is the same as that of the hemolysin purified from A. pyogenes. Nucleotide sequence analysis revealed an open reading frame of 1,605 bp encoding a 534 amino acid protein of 57,989 Da. The nucleotide sequence of the hemolysin gene from A. pyogenes swine isolate differed only slightly (97.6% identity) from the sequence of plo gene from A. pyogenes strain BBR1 reported by Billington et al (J. Bacteriol. 179: 6100-6106, 1997). The cysteine residue existed in the undecapeptide region of the hemolysin, which is highly conserved in thiol-activated cytolysins (cholesterol-binding cytolysins), and is replaced with alanine. Therefore, the hemolysin of A. pyogenes seems to be a novel member of the thiol-activated cytolysin family.  相似文献   

4.
5.
We describe the further utilization of a genetic screen that identifies mutations defective in the assembly of proteins into the Escherichia coli cytoplasmic membrane. The screen yielded mutations in each of the known genes encoding components of the E. coli signal recognition particle pathway: ffh, ffs, and ftsY, which encode Ffh, 4.5S RNA, and FtsY, respectively. In addition, the screen yielded mutations in secM, which is involved in regulating levels of the SecA component of the bacterium's protein export pathway. We used a sensitive assay involving biotinylation to show that all of the mutations caused defects in the membrane insertions of three topologically distinct membrane proteins, AcrB, MalF, and FtsQ. Among the mutations that resulted in membrane protein insertion defects, only the secM mutations also showed defects in the translocation of proteins into the E. coli periplasm. Genetic evidence suggests that the S382T alteration of Ffh affects the interaction between Ffh and 4.5S RNA.  相似文献   

6.
The ftsYEX operon in Escherichia coli encodes three proteins, two of which (FtsE and FtsX) are known to be required for cell division. Although FtsE and FtsX have been identified using SDS-PAGE, the FtsY protein has not. We have used in vitro insertion mutagenesis to identify FtsY as a 92 kD polypeptide in maxicell experiments, although predictions from the DNA sequence estimated FtsY to be 54 kD. Results suggest that this disparity could be due to the unusually high percentage of acidic residues within the protein. Complementation tests indicated the presence of a promoter within ftsY required for expression of ftsE and ftsX. The FtsY protein exhibits sequence homology with the SR alpha protein of eukaryotes which is involved in protein secretion. The essential nature of the ftsY gene was also demonstrated.  相似文献   

7.
8.
We have analyzed the essentiality or contribution to growth of each of four genes in the Escherichia coli trmD operon (rpsP, 21K, trmD, and rplS) and of the flanking genes ffh and 16K by a reverse genetic method. Mutant alleles were constructed in vitro on plasmids and transferred by recombination to the corresponding lambda phage clone (lambda 439) and from the phage clone to the E. coli chromosome. An ability to obtain recombinants only in cells carrying a complementing plasmid indicated that the mutated gene was essential, while an ability to obtain recombinants in plasmid-free cells indicated nonessentiality. In this way, Ffh, the E. coli homolog to the 54-kDa protein of the signal recognition particle of mammalian cells, and ribosomal proteins S16 and L19 were shown to be essential for viability. A deletion of the second gene, 21K, of the trmD operon reduced the growth rate of the cells fivefold, indicating that the wild-type 21-kDa protein is important for viability. A deletion-insertion in the same gene resulted in the accumulation of an assembly intermediate of the 50S ribosomal subunit, as a result of polar effects on the expression of a downstream gene, rplS, which encodes ribosomal protein L19. This finding suggests that L19, previously not considered to be an assembly protein, contributes to the assembly of the 50S ribosomal subunits. Strains deleted for the trmD gene, the third gene of the operon, encoding the tRNA (m1G37)methyltransferase (or TrmD) showed a severalfold reduced growth rate. Since such a strain grew much slower than a strain lacking the tRNA(m(1)G37) methyltransferase activity because of a point mutation, the TrmD protein might have a second function in the cell. Finally, a 16-kDa protein encoded by the gene located downstream of, and convergently transcribed to, the trmD operon was found to be nonessential and not to contribute to growth.  相似文献   

9.
Several streptococcal strains had an uncharacterized mechanism of macrolide resistance that differed from those that had been reported previously in the literature. This novel mechanism conveyed resistance to 14- and 15-membered macrolides, but not to 16-membered macrolides, lincosamides or analogues of streptogramin B. The gene encoding this phenotype was cloned by standard methods from total genomic digests of Streptococcus pyogenes 02C1064 as a 4.7 kb heterologous insert into the low-copy vector, pACYC177, and expressed in several Escherichia coli K-12 strains. The location of the macrolide- resistance determinant was established by functional analysis of deletion derivatives and sequencing. A search for homologues in the genetic databases confirmed that the gene is a novel one with homology to membrane-associated pump proteins. The macrolide-resistance coding sequence was subcloned into a pET23a vector and expressed from the inducible T7 promoter on the plasmid in E. coli BL21(DE3). Physiological studies of the cloned determinant, which has been named mefA for macrolide efflux, provide evidence for its mechanism of action in host bacteria. E. coli strains containing the cloned determinant maintain lower levels of intracellular erythromycin when this compound is added to the external medium than isogenic clones without mefA . Furthermore, intracellular accumulation of [14C]-erythromycin in the original S. pyogenes strain was always lower than that observed in erythromycin-sensitive strains. This is consistent with a hypothesis that the gene encodes a novel antiporter function which pumps erythromycin out of the cell. The gene appears to be widely distributed in S. pyogenes strains, as demonstrated by primer-specific synthesis using the polymerase chain reaction.  相似文献   

10.
《The Journal of cell biology》1989,109(6):3223-3230
We have isolated and sequenced genes from Saccharomyces cerevisiae (SRP54SC) and Schizosaccharomyces pombe (SRP54sp) encoding proteins homologous to both the 54-kD protein subunit (SRP54mam) of the mammalian signal recognition particle (SRP) and the product of a gene of unknown function in Escherichia coli, ffh (Romisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (Lond.). 340:478-482; Bernstein H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, P. Walter. 1989. Nature (Lond.). 340:482-486). To accomplish this we took advantage of short stretches of conserved sequence between ffh and SRP54mam and used the polymerase chain reaction (PCR) to amplify fragments of the homologous yeast genes. The DNA sequences predict proteins for SRP54sc and SRP54sp that are 47% and 52% identical to SRP54mam, respectively. Like SRP54mam and ffh, both predicted yeast proteins contain a GTP binding consensus sequence in their NH2-terminal half (G-domain), and methionine-rich sequences in their COOH-terminal half (M-domain). In contrast to SRP54mam and ffh the yeast proteins contain additional Met-rich sequences inserted at the COOH-terminal portion of the M-domain. SRP54sp contains a 480- nucleotide intron located 78 nucleotides from the 5' end of the open reading frame. Although the function of the yeast homologues is unknown, gene disruption experiments in S. cerevisiae show that the gene is essential for growth. The identification of SRP54sc and SRP54sp provides the first evidence for SRP related proteins in yeast.  相似文献   

11.
Aspartyl aminopeptidase (DAP), encoded by the DNPEP gene, is believed to be a cytosolic protein with high enzymatic activity in the neuroendocrine tissues. Bioinformatic analysis revealed that the genomic segment spanning the DNPEP gene is evolutionarily conserved from Caenorhabditis elegans to humans. In the present study, we sought to determine whether the expression of DAP is associated with its clustered genes when expressed in pancreatic islet cells. Using anti-DAP specific antibody in immunofluorescent stainings, we found that DAP was specifically expressed in islet alpha cells but not in exocrine acinar cells. Moreover, using electron microscopy, we found that DAP was associated with a lysosomal-like structure and secretory granules, suggesting that it plays an important role in post-translational processing and the secretion of hormones in islet cells. The identification and characterization of DNPEP syntenic genes confirm that conserved clustered genes can preferentially be expressed in the same signaling pathway.  相似文献   

12.
Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250?000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E.?coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E.?coli using regulated asRNA expression.  相似文献   

13.
Aspartyl aminopeptidase (DAP), encoded by the DNPEP gene, is believed to be a cytosolic protein with high enzymatic activity in the neuroendocrine tissues. Bioinformatic analysis revealed that the genomic segment spanning the DNPEP gene is evolutionarily conserved from Caenorhabditis elegans to humans. In the present study, we sought to determine whether the expression of DAP is associated with its clustered genes when expressed in pancreatic islet cells. Using anti-DAP specific antibody in immunofluorescent stainings, we found that DAP was specifically expressed in islet alpha cells but not in exocrine acinar cells. Moreover, using electron microscopy, we found that DAP was associated with a lysosomal-like structure and secretory granules, suggesting that it plays an important role in post-translational processing and the secretion of hormones in islet cells. The identification and characterization of DNPEP syntenic genes confirm that conserved clustered genes can preferentially be expressed in the same signaling pathway.  相似文献   

14.
A transposon mutant from Aeromonas hydrophila AH-3 was obtained which was highly resistant to opsonophagocytosis. The mutation was identified in the ftsE gene and we characterised the operon ftsY, E and X from this bacterium. These genes, as in enteric bacteria, are neighbours to rpoH. The A. hydrophilia ftsE and X genes were fully able to complement Escherichia coli ftsE mutants, and also complement the opsonophagocytosis-resistant phenotype of the A. hydrophila mutant strain. This phenotype seems to be related to the filamentous phenotype at 37 degrees C exhibited by the A. hydrophila ftsE mutant.  相似文献   

15.
While screening the clonality of Streptococcus pyogenes isolates from an outbreak of erythromycin-resistant pharyngitis in Pittsburgh, PA, we found a correlation between the presence of the chimeric element Phi10394.4 (carrying the macrolide efflux gene, mefA) and genomic DNA being resistant to cleavage by SmaI restriction endonuclease. A search of the open reading frames in Phi10394.4 identified a putative type II restriction-modification (R-M) cassette containing a cytosine methyltransferase gene (spyIM). Heterologous expression of the cloned spyIM gene, as well as allelic-replacement experiments, showed that the action of this methyltransferase (M.SpyI) was responsible for the inhibition of SmaI digestion of genomic DNA in the Phi10394.4-containing isolates. Analysis of the methylation patterns of streptococcal genomic DNA from spyIM-positive strains, a spyIM deletion mutant, and a spyIM-negative strain determined that M.SpyI specifically recognized and methylated the DNA sequence to generate 5'-C(m)CNGG. To our knowledge, this is the first methyltransferase gene from S. pyogenes to be cloned and to have its activity characterized. These results reveal why pulsed field gel electrophoresis analysis of SmaI-digested genomic DNA cannot be used to analyze the clonality of some streptococci containing Phi10394.4 and may explain the inability of previous epidemiological studies to use SmaI to analyze DNAs from macrolide-resistant streptococci. The presence of the SpyI R-M cassette in Phi10394.4 could impart a selective advantage to host strain survival and may provide another explanation for the observed increase in macrolide-resistant streptococci.  相似文献   

16.
The Streptococcus pyogenes NAD-glycohydrolase (SPN) is a toxic enzyme that is introduced into infected host cells by the cytolysin-mediated translocation pathway. However, how S. pyogenes protects itself from the self-toxicity of SPN had been unknown. In this report, we describe immunity factor for SPN (IFS), a novel endogenous inhibitor that is essential for SPN expression. A small protein of 161 amino acids, IFS is localized in the bacterial cytoplasmic compartment. IFS forms a stable complex with SPN at a 1:1 molar ratio and inhibits SPN's NAD-glycohydrolase activity by acting as a competitive inhibitor of its beta-NAD+ substrate. Mutational studies revealed that the gene for IFS is essential for viability in those S. pyogenes strains that express an NAD-glycohydrolase activity. However, numerous strains contain a truncated allele of ifs that is linked to an NAD-glycohydrolase-deficient variant allele of spn. Of practical concern, IFS allowed the normally toxic SPN to be produced in the heterologous host Escherichia coli to facilitate its purification. To our knowledge, IFS is the first molecularly characterized endogenous inhibitor of a bacterial beta-NAD(+)-consuming toxin and may contribute protective functions in the streptococci to afford SPN-mediated pathogenesis.  相似文献   

17.
The Ffh protein of Escherichia coli is a 48-kDa polypeptide that is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP). Efforts to understand the function of Ffh in bacteria have depended largely on the use of E. coli strains that allow depletion of the wild-type gene product. As an alternative approach to studying Ffh, a temperature-sensitive ffh mutant was isolated. The ffh-10(Ts) mutation results in two amino acid changes in conserved regions of the Ffh protein, and characterization of the mutant revealed that the cells rapidly lose viability at the nonpermissive temperature of 42 degrees C as well as show reduced growth at the permissive temperature of 30 degrees C. While the ffh mutant is defective in insertion of inner membrane proteins, the export of proteins with cleavable signal sequences is not impaired. The mutant also shows elevated expression of heat shock proteins and accumulates insoluble proteins, especially at 42 degrees C. It was further observed that the temperature sensitivity of the ffh mutant was suppressed by overproduction of 4.5S RNA, the RNA component of the bacterial SRP, by stabilizing the thermolabile protein. Collectively, these results are consistent with a model in which Ffh is required only for localization of proteins integral to the cytoplasmic membrane and suggest new genetic approaches to the study of how the structure of the SRP contributes to its function.  相似文献   

18.
19.
20.
T Romeo  J Moore  J Smith 《Gene》1991,108(1):23-29
A simple and widely applicable method for cloning genes involved in glucan biosynthesis is described. An Escherichia coli genomic library was prepared in the low-copy plasmid, pLG339, and E. coli transformants from this library were screened by staining with iodine vapor. Colonies that stained darker than the control were isolated and characterized. The three classes of clones that were identified included: (i) plasmids encoding E. coli glycogen biosynthetic (glg) structural genes, (ii) clones that resulted in elevated glycogen levels, but did not encode glg structural genes or enhance the level of the first enzyme of the pathway, ADPglucose pyrophosphorylase (AGPP), and (iii) clones that enhanced the level of AGPP, but did not encode this enzyme. Two clones from the latter class also enhanced glgC'-'lacZ-encoded beta-galactosidase activity, and may encode factors that regulate the expression of glg structural genes. It should be possible to readily clone glycogen biosynthetic genes from other bacterial species via this method. The method could be made specific for a desired glg gene by using a recipient strain that is defective in the gene of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号