首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Ap(4)A hydrolases are Nudix enzymes that regulate intracellular dinucleoside polyphosphate concentrations, implicating them in a range of biological events, including heat shock and metabolic stress. We have demonstrated that ATP x MgF(x) can be used to mimic substrates in the binding site of Ap(4)A hydrolase from Lupinus angustifolius and that, unlike previous substrate analogs, it is in slow exchange with the enzyme. The three-dimensional structure of the enzyme complexed with ATP x MgF(x) was solved and shows significant conformational changes. The substrate binding site of L. angustifolius Ap(4)A hydrolase differs markedly from the two previously published Nudix enzymes, ADP-ribose pyrophosphatase and MutT, despite their common fold and the conservation of active site residues. The majority of residues involved in substrate binding are conserved in asymmetrical Ap(4)A hydrolases from pathogenic bacteria, but are absent in their human counterparts, suggesting that it might be possible to generate compounds that target bacterial, but not human, Ap(4)A hydrolases.  相似文献   

2.
Asymmetrically cleaving diadenosine 5',5"'-P(1),P(4)-tetraphosphate (Ap4A) hydrolase activity has been detected in extracts of adult Caenorhabditis elegans and the corresponding cDNA amplified and expressed in Escherichia coli. As expected, sequence analysis shows the enzyme to be a member of the Nudix hydrolase family. The purified recombinant enzyme behaves as a typical animal Ap4A hydrolase. It hydrolyses Ap4A with a K(m) of 7 microM and k(cat) of 27 s(-1) producing AMP and ATP as products. It is also active towards other adenosine and diadenosine polyphosphates with four or more phosphate groups, but not diadenosine triphosphate, always generating ATP as one of the products. It is inhibited non-competitively by fluoride (K(i)=25 microM) and competitively by adenosine 5'-tetraphosphate with Ap4A as substrate (K(i)=10 nM). Crystals of diffraction quality with the morphology of rectangular plates were readily obtained and preliminary data collected. These crystals diffract to a minimum d-spacing of 2 A and belong to either space group C222 or C222(1). Phylogenetic analysis of known and putative Ap4A hydrolases of the Nudix family suggests that they fall into two groups comprising plant and Proteobacterial enzymes on the one hand and animal and archaeal enzymes on the other. Complete structural determination of the C. elegans Ap4A hydrolase will help determine the basis of this grouping.  相似文献   

3.
The T4 bacteriophage gene e.1 was cloned into an expression vector and expressed in Escherichia coli, and the purified protein was identified as a Nudix hydrolase active on FAD, adenosine 5'-triphospho-5'-adenosine (Ap(3)A), and ADP-ribose. Typical of members of the Nudix hydrolases, the enzyme has an alkaline pH optimum (pH 8) and requires a divalent cation for activity that can be satisfied by Mg(2+) or Mn(2+). For all substrates, AMP is one of the products, and unlike most of the other enzymes active on Ap(3)A, the T4 enzyme hydrolyzes higher homologues including Ap(4-6)A. This is the first member of the Nudix hydrolase gene superfamily identified in bacterial viruses and the only one present in T4. Although the protein was predicted to be orthologous to E. coli MutT on the basis of a sequence homology search, the properties of the gene and of the purified protein do not support this notion because of the following. (a) The purified enzyme hydrolyzes substrates not acted upon by MutT, and it does not hydrolyze canonical MutT substrates. (b) The e.1 gene does not complement mutT1 in vivo. (c) The deletion of e.1 does not increase the spontaneous mutation frequency of T4 phage. The properties of the enzyme most closely resemble those of Orf186 of E. coli, the product of the nudE gene, and we therefore propose the mnemonic nudE.1 for the T4 phage orthologue.  相似文献   

4.
We have determined the crystal structure, at 1.4A, of the Nudix hydrolase DR1025 from the extremely radiation resistant bacterium Deinococcus radiodurans. The protein forms an intertwined homodimer by exchanging N-terminal segments between chains. We have identified additional conserved elements of the Nudix fold, including the metal-binding motif, a kinked beta-strand characterized by a proline two positions upstream of the Nudix consensus sequence, and participation of the N-terminal extension in the formation of the substrate-binding pocket. Crystal structures were also solved of DR1025 crystallized in the presence of magnesium and either a GTP analog or Ap(4)A (both at 1.6A resolution). In the Ap(4)A co-crystal, the electron density indicated that the product of asymmetric hydrolysis, ATP, was bound to the enzyme. The GTP analog bound structure showed that GTP was bound almost identically as ATP. Neither nucleoside triphosphate was further cleaved.  相似文献   

5.
6.
Gene Dr1184 from Deinococcus radiodurans codes for a Nudix enzyme (DR-CoAse) that hydrolyzes the pyrophosphate moiety of coenzyme A (CoA). Nudix enzymes with the same specificity have been found in yeast, humans, and mice. The three-dimensional structure of DR-CoAse, the first of a Nudix hydrolase with this specificity, reveals that this enzyme contains, in addition to the fold observed in other Nudix enzymes, insertions that are characteristic of a CoA-hydrolyzing Nudix subfamily. The structure of the complex of the enzyme with Mg(2+), its activating cation, reveals the position of the catalytic site. A helix, part of the N-terminal insertion, partially occludes the binding site and has to change its position to permit substrate binding. Comparison of the structure of DR-CoAse to those of other Nudix enzymes, together with the location in the structure of the sequence characteristic of CoAses, suggests a mode of binding of the substrate to the enzyme that is compatible with all available data.  相似文献   

7.
Nudix hydrolases are a family of proteins that contain the characteristic sequence GX(5)EX(7)REUXEEXG(I/L/V), the Nudix box. They catalyze the hydrolysis of a variety of nucleoside diphosphate derivatives such as ADP-ribose, Ap(n)A (3 相似文献   

8.
The ndx1 gene, which encodes a Nudix protein, was cloned from the extremely thermophilic bacterium Thermus thermophilus HB8. This gene encodes a 126-amino acid protein that includes the characteristic Nudix motif conserved among Nudix proteins. Ndx1 was overexpressed in Escherichia coli and purified. Ndx1 was stable up to 95 degrees C and at extreme pH. Size exclusion chromatography indicated that Ndx1 was monomeric in solution. Ndx1 specifically hydrolyzed (di)adenosine polyphosphates but not ATP or diadenosine triphosphate, and it always generated ATP as the product. Diadenosine hexaphosphate (Ap(6)A), the most preferred substrate, was hydrolyzed to produce two ATP molecules, which is a novel hydrolysis mode for Ap(6)A, with a K(m) of 1.4 microm and a k(cat) of 4.1 s(-1). These results indicate that Ndx1 is a (di)adenosine polyphosphate hydrolase. Ndx1 activity required the presence of the divalent cations Mn(2+), Mg(2+), Zn(2+), and Co(2+), whereas Ca(2+), Ni(2+), and Cu(2+) were not able to activate Ndx1. Fluoride ion inhibited Ndx1 activity via a non-competitive mechanism. Optimal activity for Ap(6)A was observed at around pH 8.0 and about 70 degrees C. We found two important residues with pK(a) values of 6.1 and 9.6 in the free enzyme and pK(a) values of 7.9 and 10.0 in the substrate-enzyme complex. Kinetic studies of proteins with amino acid substitutions suggested that Glu-46 and Glu-50 were conserved residues in the Nudix motif and were involved in catalysis. Trp-26 was likely involved in enzyme-substrate interactions based on fluorescence measurements. Based on these results, the mechanism of substrate recognition and catalysis are discussed.  相似文献   

9.
Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases.  相似文献   

10.
Cleavage factor I(m) is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor I(m) is an oligomer composed of a small 25 kDa subunit (CF I(m)25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF I(m)25, a hydrolase motif with a characteristic alpha/beta/alpha fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF I(m)25 in its free and diadenosine tetraphosphate (Ap(4)A) bound forms at 1.85 and 1.80 A, respectively. CF I(m)25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF I(m)25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap(4)A. The complex and apo protein structures provide insight into the active oligomeric state of CF I(m) and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.  相似文献   

11.
The fission yeast Schizosaccharomyces pombe contains a gene on chromosome I that encodes a hypothetical nudix hydrolase, YA9E. The gene, designated aps1, has been cloned and the protein has been purified from Escherichia coli with a yield of 10 mg of Aps1/L of culture. Aps1, composed of 210 amino acids with a calculated molecular mass of 23 724 Da, behaves as a monomer with a sedimentation coefficient of 1.92 S as determined by analytical ultracentrifugation. The effective hydrodynamic radius is about 29 A as determined by both analytical ultracentrifugation and gel-filtration chromatography. Aps1, whose expression was detected in S. pombe by Western blotting, is an enzyme that catalyzes the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4A from Ap6A and ADP and ATP from Ap5A. Values of Km for Ap6A and Ap5A are 19 microM and 22 microM, respectively, and the corresponding values of kcat are 2.0 s-1 and 1.7 s-1, respectively. The enzyme has limited activity on Ap4A and negligible activity on Ap3A, ADP-ribose, and NADH. Aps1 catalyzes the hydrolysis of mononucleotides with decreasing activity in order from p5A to AMP. Optimal activity with Ap6A as substrate is observed at pH 7.6 and in the presence of 0.1-1 mM MnCl2. Aps1 is the first nudix hydrolase isolated from S. pombe, and it is the first enzyme identified with this specific substrate specificity and reaction products.  相似文献   

12.
An enzyme hydrolyzing diadenosine 5',5"'P1, P4-tetraphosphate (Ap4A) to AMP and ATP has been purified to apparent homogeneity from mouse liver cell extracts. The isolation procedure comprised ammonium sulfate precipitation, chromatography on Sephadex G-75. DEAE-cellulose, blue Sepharose and AMP-Sepharose. The enzyme is a single polypeptide chain with a native Mr = 64,000 with a Km of 1.66 microM and Vmax of 1.25 mumol/min. AMP, ADP, Ap4, GTP, Gp4, Ap3A, Ap5A, Gp3G, and Gp5G are noncompetitive inhibitors of the Ap4A hydrolase activity, whereas Gp4G inhibits Ap4A hydrolysis competitively with a Ki of 6 microM. Theophylline, caffeine, and isobutylmethylxanthine do not or only slightly inhibit Ap4A hydrolysis. Mitogenic factors have no effect on the enzymatic activity of Ap4A hydrolase, excluding that a direct influence of internalized mitogens on Ap4A degradation could be responsible for mitogen-dependent fluctuation of intracellular Ap4A pool sizes.  相似文献   

13.
The African swine fever virus (ASFV) g5R gene encodes a protein containing a Nudix hydrolase motif which in terms of sequence appears most closely related to the mammalian diadenosine tetraphosphate (Ap4A) hydrolases. However, purified recombinant g5R protein (g5Rp) showed a much wider range of nucleotide substrate specificity compared to eukaryotic Ap4A hydrolases, having highest activity with GTP, followed by adenosine 5'-pentaphosphate (p5A) and dGTP. Diadenosine and diguanosine nucleotides were substrates, but the enzyme showed no activity with cap analogues such as 7mGp3A. In common with eukaryotic diadenosine hexaphosphate (Ap6A) hydrolases, which prefer higher-order polyphosphates as substrates, g5Rp also hydrolyzes the diphosphoinositol polyphosphates PP-InsP5 and [PP]2-InsP4. A comparison of the kinetics of substrate utilization showed that the k(cat)/K(m) ratio for PP-InsP5 is 60-fold higher than that for GTP, which allows classification of g5R as a novel diphosphoinositol polyphosphate phosphohydrolase (DIPP). Unlike mammalian DIPP, g5Rp appeared to preferentially remove the 5-beta-phosphate from both PP-InsP5 and [PP]2-InsP4. ASFV infection led to a reduction in the levels of PP-InsP5, ATP and GTP by ca. 50% at late times postinfection. The measured intracellular concentrations of these compounds were comparable to the respective K(m) values of g5Rp, suggesting that one or all of these may be substrates for g5Rp during ASFV infection. Transfection of ASFV-infected Vero cells with a plasmid encoding epitope-tagged g5Rp suggested localization of this protein in the rough endoplasmic reticulum. These results suggest a possible role for g5Rp in regulating a stage of viral morphogenesis involving diphosphoinositol polyphosphate-mediated membrane trafficking.  相似文献   

14.
Nudix hydrolases are a superfamily of pyrophosphatases, most of which are involved in clearing the cell of potentially deleterious metabolites and in preventing the accumulation of metabolic intermediates. We determined that the product of the orf17 gene of Escherichia coli, a Nudix NTP hydrolase, catalyzes the hydrolytic release of pyrophosphate from dihydroneopterin triphosphate, the committed step of folate synthesis in bacteria. That this dihydroneopterin hydrolase (DHNTPase) is indeed a key enzyme in the folate pathway was confirmed in vivo: knockout of this gene in E. coli leads to a marked reduction in folate synthesis that is completely restored by a plasmid carrying the gene. We also determined the crystal structure of this enzyme using data to 1.8 A resolution and studied the kinetics of the reaction. These results provide insight into the structural bases for catalysis and substrate specificity in this enzyme and allow the definition of the dihydroneopterin triphosphate pyrophosphatase family of Nudix enzymes.  相似文献   

15.
16.
A hydrolase splitting adenosine(5')triphospho(5')adenosine (Ap3A) to AMP and ADP has recently been detected in human plasma [Lüthje, J. and Ogilvie, A. (1984) Biochem. Biophys. Res. Commun. 118, 704-709]. The enzyme has been purified to apparent homogeneity, as stained in a native polyacrylamide gel. From gel filtration data a Stokes radius of 5.9 nm was calculated, suggesting a molecular mass of about 230 kDa. The presence of the non-ionic detergent Triton X-100 did not change the molecular mass. The hydrolase dissociated to three major protein components (66 kDa; 45 kDa; 16 kDa) during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and mercaptoethanol. Binding of the native enzyme to concanavalin-A--Sepharose and specific inhibition of binding by methyl mannoside indicated that the hydrolase is a glycoprotein. Two of the subunits (66 kDa; 45 kDa) could be affinity-labeled with radioiodinated concanavalin A. Active hydrolase could be prepared in buffers without added metal ions. Treatment with EDTA, however, completely abolished the hydrolytic activity. The enzyme could be reactivated by incubation with Ca2+, Co2+ and, at best, with Zn2+, whereas Mg2+ was ineffective. The affinity of the enzyme for Ap3A was high (Km = 1 microM), with normal Michaelis-Menten kinetics. The homolog dinucleotide Ap4A was also substrate (Km = 0.6 microM) yielding AMP and ATP as products after the asymmetric split. Other dinucleotides, such as NAD, and also mononucleotides (ATP,UTP) were degraded to nucleoside monophosphates indicating a broad specificity of the enzyme. The synthetic compound thymidine 5'-monophosphate p-nitrophenyl ester was substrate with low affinity whereas its 3'-homolog was not hydrolyzed. Optimal activity of the hydrolase was found at pH 8.5.  相似文献   

17.
GDP-mannose glycosyl hydrolase (GDPMH) catalyzes the hydrolysis of GDP-mannose and GDP-glucose to GDP and sugar by substitution with inversion at C1 of the sugar. The enzyme has a modified Nudix motif and requires one divalent cation for activity. The 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP complex, together with kinetic, mutational, and NMR data, suggests a mechanism for the GDPMH reaction. Several residues and the divalent cation strongly promote the departure of the GDP leaving group, supporting a dissociative mechanism. Comparison of the GDPMH structure with that of a typical Nudix hydrolase suggests how sequence changes result in the switch of catalytic activity from P-O bond cleavage to C-O bond cleavage. Changes in the Nudix motif result in loss of binding of at least one Mg(2+) ion, and shortening of a loop by 6 residues shifts the catalytic base by approximately 10 A.  相似文献   

18.
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not substrates of the human Fhit (fragile histidine triad) protein, which acts as a typical dinucleoside triphosphate hydrolase (EC 3.6.1.29). In contrast, the diadenosine tetraphosphate counterparts are substrates for the human (asymmetrical) Ap(4)A hydrolase (EC 3.6.1.17). The relative rates of the hydrolysis of 0.15 mM AppppA, (2'-pdA)AppppA, and (2'-pdA)AppppA(2"'-pdA) catalyzed by the latter enzyme were determined as 100:232:38, respectively. The asymmetrical substrate was hydrolyzed to ATP + (2'-pdA)AMP (80%) and to (2'-pdA)ATP + AMP (20%). The human Fhit protein, for which Ap(4)A is a poor substrate, did not degrade the 2'-adenylated diadenosine tetraphosphates either. The preference of the interferon-inducible 2'-5' oligoadenylate synthetase to use Ap(3)A over Ap(4)A as a primer for 2'-adenylation and the difference in the recognition of the 2'-adenylated diadenosine triphosphates versus the 2'-adenylated diadenosine tetraphosphates by the dinucleoside polyphosphate hydrolases described here provide a mechanism by which the ratio of the 2'-adenylated forms of the signalling molecules, Ap(3)A and Ap(4)A, could be regulated in vivo.  相似文献   

19.
Nudix hydrolases catalyze the hydrolysis of nucleoside diphosphates linked to other moieties, X, and contain the sequence motif or Nudix box, GX(5)EX(7)REUXEEXGU. The mechanisms of Nudix hydrolases are highly diverse in the position on the substrate at which nucleophilic substitution occurs, and in the number of required divalent cations. While most proceed by associative nucleophilic substitutions by water at specific internal phosphorus atoms of a diphosphate or polyphosphate chain, members of the GDP-mannose hydrolase sub-family catalyze dissociative nucleophilic substitutions, by water, at carbon. The site of substitution is likely determined by the positions of the general base and the entering water. The rate accelerations or catalytic powers of Nudix hydrolases range from 10(9)- to 10(12)-fold. The reactions are accelerated 10(3)-10(5)-fold by general base catalysis by a glutamate residue within, or beyond the Nudix box, or by a histidine beyond the Nudix box. Lewis acid catalysis, which contributes 10(3)-10(5)-fold to the rate acceleration, is provided by one, two, or three divalent cations. One divalent cation is coordinated by two or three conserved residues of the Nudix box, the initial glycine and one or two glutamate residues, together with a remote glutamate or glutamine ligand from beyond the Nudix box. Some Nudix enzymes require one (MutT) or two additional divalent cations (Ap(4)AP), to neutralize the charge of the polyphosphate chain, to help orient the attacking hydroxide or oxide nucleophile, and/or to facilitate the departure of the anionic leaving group. Additional catalysis (10-10(3)-fold) is provided by the cationic side chains of lysine and arginine residues and by H-bond donation by tyrosine residues, to orient the general base, or to promote the departure of the leaving group. The overall rate accelerations can be explained by both independent and cooperative effects of these catalytic components.  相似文献   

20.
The gastric pathogen Helicobacter pylori harbors one Nudix hydrolase, NudA, that belongs to the nucleoside polyphosphate hydrolase subgroup. In this work, the enzymatic activity of purified recombinant NudA protein was analyzed on a number of nucleoside polyphosphates. This predicted 18.6-kDa protein preferably hydrolyzes diadenosine tetraphosphate, Ap(4)A at a k(cat) of 0.15 s(-1) and a K(m) of 80 microm, resulting in an asymmetrical cleavage of the molecule into ATP and AMP. To study the biological role of this enzyme in H. pylori, an insertion mutant was constructed. There was a 2-7-fold decrease in survival of the mutant as compared with the wild type after hydrogen peroxide exposure but no difference in survival after heat shock or in spontaneous mutation frequency. Western blot analyses revealed that NudA is constitutively expressed in H. pylori at different growth stages and during stress, which would indicate that this protein has a housekeeping function. Given that H. pylori is a diverse species and that all the H. pylori strains tested in this study harbor the nudA gene and show protein expression, we consider NudA to be an important enzyme in this bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号