首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The production of collagenase has been examined in primary cultures of multicellular epithelial organoids and of stromal cells isolated from DMBA-induced mammary tumors of the rat. Plastic culture dishes and dishes coated with collagen fibrils were used to study the effect of such a substrate on collagenase release. Cultures of 51-μm epithelial organoids consisted of cuboidal cells and a myoepithelial-like cell type which formed a continuous layer under the cuboidal cells. A transient low production of collagenase with an apparent molecular weight (MW) of 72 kD was detected on both substrates. Upon separation by trypsin only cuboidal cells released collagenase. Cultures of 27-μm organoids contained only few myoepithelial-like cells. On plastic, they formed dense monolayers of cuboidal cells and released more collagenase than the greater aggregates. On collagen fibrils, these organoids formed cords and ridges and collagenase production was about 4- to 6-fold higher. These results indicate that collagenase release is influenced by the nature of the interaction of cuboidal cells with the substrate on which they grow. Similar organoids prepared from virgin mammary glands failed to secrete collagenase on either substrate. Primary cultures of stromal cells derived from tumor tissues comprised one basic cell type that expressed a series of properties characteristic for monocytes/macrophages. These cultures were capable of producing collagenase with an apparent MW of 56 kD. Collagenase with a similar size was detected in the extracts of 51 from 65 mammary tumors.  相似文献   

3.
SOMITE CHONDROGENESIS : A Structural Analysis   总被引:2,自引:1,他引:1  
Light and electron microscopy are used in this study to compare chondrogenesis in cultured somites with vertebral chondrogenesis These studies have also characterized some of the effects of inducer tissues (notochord and spinal cord), and different nutrient media, on chondrogenesis in cultured somites Somites from stage 17 (54–60 h) chick embryos were cultured, with or without inducer tissues, and were fed nutrient medium containing either horse serum (HS) and embryo extract (EE), or fetal calf serum (FCS) and F12X Amino acid analyses were also utilized to determine the collagen content of vertebral body cartilage in which the fibrils are homogeneously thin (ca. 150 Å) and unbanded. These analyses provide strong evidence that the thin unbanded fibrils in embryonic cartilage matrix are collagen. These thin unbanded collagen fibrils, and prominent 200–800 Å protein polysaccharide granules, constitute the structured matrix components of both developing vertebral cartilage and the cartilage formed in cultured somites Similar matrix components accumulate around the inducer tissues notochord and spinal cord. These matrix components are structurally distinct from those in embryonic fibrous tissue The synthesis of matrix by the inducer tissues is associated with the inductive interaction of these tissues with somitic mesenchyme. Due to the deleterious effects of tissue isolation and culture procedures many cells die in somitic mesenchyme during the first 24 h in culture. In spite of this cell death, chondrogenic areas are recognized after 12 h in induced cultures, and through the first 2 days in all cultures there are larger accumulations of structured matrix than are present in equivalently aged somitic mesenchyme in vivo. Surviving chondrogenic areas develop into nodules of hyaline cartilage in all induced cultures, and in most non-induced cultures fed medium containing FCS and F12X There is more cell death, less matrix accumulation, and less cartilage formed in cultures fed medium containing HS and EE. The inducer tissues, as well as nutrient medium containing FCS and F12X, facilitate cell survival, the synthesis and accumulation of cartilage matrix, and the formation of cartilage nodules in cultured somites.  相似文献   

4.
Fibroblast (F) and epithelial (E) cells were obtained as primary outgrowths from explants of fetal porcine maxillary molars and subcultured up to four passages in monolayers enriched with either cell type. Histology of a tooth bud after 1 day in culture showed intact odontogenic E cell layers which were the probable source of the E cell outgrowths. After 2 months in culture, the fourth passage E cells demonstrated morphological differentiation by an alteration in cell packing and the formation of domes and nodules, when E and F cells were cocultured. Occasionally the nodules grew to considerable size, indicating the potential of these cells to aggregate and reorganize into odontogenic tissues even on culture dishes. The cells were characterized in monolayer culture by immunocytochemical staining. Laminin and type IV collagen staining was distributed diffusely throughout the culture, whereas type I collagen and osteonectin staining was predominantly localized in the F cells. Radiolabelled proteins from both E and F cell media produced similar collagen patterns (95% type I, 4% type V, 1% other), except that the F cells appeared to produce active collagenase. In addition, the E cells produced two radiolabelled proteins (relative masses of 50,000 and 53,000) that reacted with an affinity-purified antibody directed against porcine amelogenin. These experiments show that cells subcultured from tooth buds and grown in monolayer cultures can be used to study tooth organogenesis in vitro, as well as enamel protein biosynthesis.  相似文献   

5.
Mesenchyme cells derived from embryonic mouse limb buds were cultured at high cell density. During the first 24 h in culture, groups of mesenchyme cells condensed and formed cell contacts and specialized junctions. These condensations were the nodule primordia which gave rise to cartilage nodules. The cell contacts were lost as the mesenchyme cells in the primordia developed into cartilage nodules. The mature nodules contained chondrocytes isolated from one another by an extensive extracellular matrix consisting of cartilage type collagen fibrils and proteoglycan granules. The differentiation of the mesenchyme cells to chondrocytes was also characterized by the loss of a 240,000-MW cell surface glycoprotein and the appearance of an 80,000-MW surface protein. The addition of vitamin A to the medium on Day 1 inhibited chondrogenesis. The cells were closely packed together, and the limited extracellular space contained thick, banded collagen fibrils with no proteoglycan granules. The cells exhibited extensive areas of close membrane contact and specialized junctions. Vitamin A-treated cultures also retained the 240,000-MW surface glycoprotein and retarded the appearance of the 80,000-MW cell surface protein. The results of this study suggest that cell surface features normally present on mesenchyme cells are maintained and exaggerated by vitamin A.  相似文献   

6.
To examine mechanisms by which reduced type V collagen causes weakened connective tissues in the Ehlers-Danlos syndrome (EDS), we examined matrix deposition and collagen fibril morphology in long-term dermal fibroblast cultures. EDS cells with COL5A1 haplo-insufficiency deposited less than one-half of hydroxyproline as collagen compared to control fibroblasts, though total collagen synthesis rates are near-normal because type V collagen represents a small fraction of collagen synthesized. Cells from patients with osteogenesis imperfecta (OI) and haplo-insufficiency for proalpha1(I) chains of type I collagen also incorporated about one-half the collagen as controls, but this amount was proportional to their reduced rates of total collagen synthesis. Collagen fibril diameter was inversely proportional to type V/type I collagen ratios (EDS > control > OI). However, a reduction of type V collagen, in the EDS derived cells, was associated with the assembly of significantly fewer fibrils compared to control and OI cells. These data indicate that in cell culture, the quantity of collagen fibrils deposited in matrix is highly sensitive to reduction in type V collagen, far out of proportion to type V collagen's contribution to collagen mass.  相似文献   

7.
 We report on the application of a pyrogallol red-vanadium complex (PR-V) for ultracytochemical staining of proteinaceous structures in animal tissues and cell cultures. This dye may be used as a general purpose stain in electron microscopy. In contrast to osmium tetroxide, the price of the material is low and no toxic vapors are produced. The PR-V complex was prepared by addition of vanadium (IV) oxide sulfate to pyrogallol red dissolved in acetate buffer (pH 5.6). The formation of the complex was indicated by a color change from purple-red (λmax=520 nm) to violet (λmax=539 nm) which occurred at equimolar concentrations of the dye and the metal salt. Under these conditions PR-V was stable for several days. The mechanism of PR-V binding was checked in dot blots using different proteins as well as heparin for control. While heparin remained unstained, proteins were stained in a dose-dependent manner. Deamination of proteins with nitric oxide strongly reduced PR-V staining in dot blots as well as in cell cultures. Optimal staining results of animal cells and tissues were obtained in specimens that had been mildly fixed for at least 1 h or longer with a mixture of 0.1% glutaraldehyde and 1.0% paraformaldehyde dissolved in phosphate-buffered saline, pH 7.2, washed with acetate buffer, pH 5.6, and subsequently treated with PR-V in the presence of 50% ethanol at room temperature. Control specimens without PR-V but treated en bloc with uranyl acetate or sodium molybdate showed similar contrast but less details in the ultrastructure of the tissue. All specimens were embedded in epoxy resin and ultrathin sections were stained conventionally with uranyl and lead salt solutions. In electron micrographs, membrane-associated particles, stress fibers and filaments of the cell cortex, collagen fibrils, tight junctions and desmosomes, and other proteinaceous components were clearly visualized only in the PR-V-treated specimens. In conclusion, the ability to bind selectively and specifically to proteinaceous structures makes PR-V a versatile stain to study the localization and distribution of these structures in cells and tissues at the ultrastructural level. Accepted: 14 June 1996  相似文献   

8.
Summary We have previously reported that pericytes derived from retinal and brain microvessels aggregate into nodules soon after reaching confluence. Nodule formation involves a reorganization of the cells resulting in the presence of sparse cells, confluent monolayers, multilayers, sprouts, and nodules within the same culture dish. Extracellular calcification occurs only within the nodules, demonstrating that pericytes are capable of undergoing osteogenic differentiation in culture and that this differentiation is related to nodule formation. Using immunofluorescence we have now studied the distribution of laminin, type IV collagen, type X collagen, and tenascin in pericyte cultures during nodule formation. These matrix macromolecules were also identified by a combination of biochemical techniques, including Northern blot hybridization, immunoblotting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecule that seems to be related to type X collagen was demonstrated by the presence of a pepsin-resistant, collagenase-sensitive polypeptide of molecular weight approximately 45 kDa. The production of laminin, type X-related collagen, and tenascin by pericytes has not been previously reported. Our results suggest that the synthesis or distribution or both of these molecules is dependent on the state of pericyte differentiation. The expression of laminin, type IV collagen, and type X-related collagen was maximal in multilayer areas, sprouts, and nodules. Tenascin appeared homogeneously distributed in monolayer and multilayer areas; when calcified nodules were present, the anti-tenascin serum preferentially decorated a discrete area circumscribing the nodules. Tenascin and type X collagen have been found transiently in vivo preceding calcification; their possible role in this process is not known. Our results also suggest an association between laminin, type IV collagen, and calcification. The in vitro experimental system described here may help to clarify the role of matrix macromolecules in the calcification process.  相似文献   

9.
Adult pig smooth muscle cells (SMC) were isolated from the aortic media by collagenase digestion, subcultured as monolayer, and then re-integrated into a three-dimensional network of type I collagen. The contractile state characteristic for resident arterial wall SMC changed to the synthetic, fibroblast-like state. The cells reorganized the randomly orientated collagen fibrils causing the lattice to shrink. The influence of the extracellular matrix on the ultrastructure, the proliferation, and the collagen synthesis of these SMC embedded in the collagen lattice was investigated and compared to cells cultured in monolayer. The amount of total protein and collagens synthesized by SMC embedded in lattices was lowered as compared to monolayer cultures. Whereas total protein synthesis decreased continuously during the culture period, the proportion of collagen synthesis remained at a constant level. Although cells proliferated in lattices, proliferation was clearly slowed down as compared to monolayer cultures. The ultrastructure of entrapped synthetic state SMC was comparable to that of monolayer-cultured cells. Their cytoplasm was largely filled by elements of the endoplasmic reticulum, Golgi complexes and abundant mitochondria. With prolonged culture time, electron-dense granules as well as bodies containing whorled membranes could be found in the cytoplasm. These results indicate that synthetic state SMC can exhibit differential biosynthetic activity dependent on the actual matrix environment; cells seem to be able to sense the macromolecular composition of the extracellular matrix and to modify their production of matrix components accordingly.  相似文献   

10.
The effect of glucocorticoids on sulfated proteoglycan synthesis by rabbit costal chondrocyte cultures exposed to serum-free conditions has been examined. Low density cultures of rabbit costal chondrocytes were maintained on dishes coated with extracellular matrix produced by bovine corneal endothelial cells and exposed to a 9:1 mixture (v/v) of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with transferrin, high density lipoproteins, fibroblast growth factor, and insulin (Medium A). Chondrocytes maintained in the presence of Medium A supplemented with 10(-7) M hydrocortisone reorganized, at confluence, into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix in which abundant thin collagen fibrils characteristic of type II collagen were observed. The cell ultrastructure and fibrils of the pericellular matrix were similar to those seen in vivo. In contrast, cells maintained in the presence of Medium A alone, once they reached confluence, formed a fibroblastic multilayer and produced thick collagen bundles. The level of 35SO4(2-) incorporated into large cartilage-specific proteoglycans in glucocorticoid-supplemented cultures was 33-fold higher than that of glucocorticoid-free cultures. The level of 35SO4(2-) incorporated into small ubiquitous proteoglycans was only 4-fold higher than that of glucocorticoid-free cultures. On the other hand, the level of [3H]glucosamine incorporated into hyaluronate in glucocorticoid-supplemented cultures was 4.5-fold lower than that of glucocorticoid-free cultures. Within 24 h of their addition to confluent cultures, hydrocortisone or dexamethasone markedly stimulated proteoglycan synthesis. This effect was not mimicked by androgens, estrogens, progesterone, or an inactive form of glucocorticoids such as deoxycorticosterone. This suggests that glucocorticoids have a direct and specific stimulatory effect on cartilage-specific proteoglycan synthesis and are essential for the maintenance of this synthesis in low density chondrocyte cultures.  相似文献   

11.
Rat bone marrow stromal cells were cultured in vitro. At days 14-15 of culture, dense clusters of polygonal cells were formed, and they mineralized 2-3 days later. The cells resembling osteoblasts or young osteocytes were histologically observed to be embedded in mineralized or unmineralized extracellular matrices of the nodules. Next, these mineralized nodules were electron-microscopically examined. The osteoblastic cells associated with the nodules had a well-developed rough endoplasmic reticulum, an evident Golgi apparatus and some mitochondria as their intracellular organellae. Some lysosomes and microfilaments were also visible in the cytoplasms. Moreover, some cells protruded cell processes toward the neighboring cells through the extracellular matrix. The extracellular matrix consisted of numerous collagen fibrils which were striated with 60-70 nm axial periodicity and which was similar to bone tissue collagen. A large number of matrix vesicles were scattered among the collagen fibrils in the unmineralized area of the nodules. In contrast, in the mineralized area, numerous matrix vesicles at different stages of maturation and many calcified spherules were observed. That is the mineralization in this culture system was considered to be initiated in association with the matrix vesicles and to progress along the collagen fibrils. From these findings, it was confirmed by the present study that the mineralized nodules formed in this bone marrow stromal cell culture were ultrastructurally similar to bone and that the mineralization also proceeded by going through the normal calcification process. This culture system is considered to be available to study osteogenic differentiation and calcification mechanisms.  相似文献   

12.
Three-dimensional ultrastructure of human tendons.   总被引:1,自引:0,他引:1  
The three-dimensional ultrastructure of human tendons has been studied. Epitenon and peritenon consist of a dense network of longitudinal, oblique and transversal collagen fibrils crossing the tendon fibres. The internal structure of tendon fibres is also complex. The collagen fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibrils do not run only parallel but also cross each other forming spirals (plaits). These fibril bundles are bound together by a three-dimensional collagen fibril network of endotenon. In the myotendinous junction the surface of the muscle cells form processes. A network of tendineal collagen fibrils fills the recesses between the muscle cell processes penetrating the basement membrane of these processes. This complex ultrastructure of human tendons most likely offers a good buffer system against longitudinal, transversal, horizontal as well as rotational forces during movement and activity.  相似文献   

13.
Culture of human dermal fibroblasts within a three-dimensional matrix composed of native type I collagen fibrils is widely used to study the cellular responses to the extracellular matrix. Upon contact with native type I collagen fibrils human skin fibroblasts activate latent 72-kDa type IV collagenase/ gelatinase (MMP-2) to its active 59- and 62-kDa forms. This activation did not occur when cells were cultured on plastic dishes coated with monomeric type I collagen or its denatured form, gelatin. Activation could be inhibited by antibodies against MT1-MMP, by the addition of TIMP-2 and by prevention of MT1-MMP processing. MT1-MMP protein was detected at low levels as active protein in fibroblasts cultured as monolayers. In collagen gel cultures, an increase of the active, 60-kDa MT1-MMP and an additional 63-kDa protein corresponding to inactive MT1-MMP was detected. Incubation of medium containing latent MMP-2 with cell membranes isolated from fibroblasts grown in collagen gels caused activation of the enzyme. Furthermore, regulation of MT1-MMP expression in collagen cultures seems to be mediated by alpha2beta1 integrins. These studies suggest that activation of the proMMP-2 is regulated at the cell surface by a mechanism which is sensitive to cell culture in contact with physiologically relevant matrices and which depends on the ratio of proenzyme and the specific inhibitor TIMP-2.  相似文献   

14.
Type VII collagen is a major structural component of anchoring fibrils   总被引:44,自引:16,他引:28       下载免费PDF全文
Anchoring fibrils are specialized fibrous structures found in the subbasal lamina underlying epithelia of several external tissues. Based upon their sensitivity to collagenase and the similarity in banding pattern to artificially created segment-long spacing crystallites (SLS) of collagens, several authors have suggested that anchoring fibrils are lateral aggregates of collagenous macromolecules. We recently reported the similarity in length and banding pattern of anchoring fibrils to type VII collagen SLS crystallites. We now report the construction and characterization of a murine monoclonal antibody specific for type VII collagen. The epitope identified by this antibody has been mapped to the carboxyl terminus of the major helical domain of this molecule. The presence of type VII collagen as detected by indirect immunofluorescence in a variety of tissues corresponds exactly with ultrastructural observations of anchoring fibrils. Ultrastructural immunolocalization of type VII collagen using a 5-nm colloidal gold-conjugated second antibody demonstrates metal deposition upon anchoring fibrils at both ends of these structures, as predicted by the location of the epitope on type VII collagen. Type VII collagen is synthesized by primary cultures of amniotic epithelial cells. It is also produced by KB cells (an epidermoid carcinoma cell line) and WISH (a transformed amniotic cell line).  相似文献   

15.
Summary In the heart of the adult rat, fibroblasts are mainly responsible for the synthesis and deposition of the collagenous matrix. Because these cells in vitro may serve as an important model system for studies of collagen metabolism in heart tissue, we have cultured and characterized rat-heart fibroblasts from young adult and old animals. Conditions included use of media of different compositions with and without addition of ascorbate. Cell used were either cultured directly from fresh tissues or thawed previously frozen cells. Cultured cells were studied with respect to growth properties, morphology and ultrastructure and patterns of collagen. Heart fibroblasts generally resembled fibroblasts cultured from other tissues, but were more like skeletal muscle fibroblasts in that they deposited, in addition to type I collagen, type IV collagen and laminin. The fibroblasts showed a typical appearance in phase-contrast microscopy and electron microscopy. In the case of cells grown with added ascorbate, aligned collagen fibrils in the extracellular matrix showed a periodicity typical of type I collagen. The deposition of type I collagen occurred only in medium supplemented with ascorbate, and in that circumstance increased as a function of time past confluence; this was independent of the age of the animal from which the cells were obtained or of other changes of medium composition studied. Immunofluorescence studies with specific antibodies revealed that the cells deposited types I and IV collagens, laminin and fibronectin. In contrast to the case of type I collagen, the deposition of type IV collagen occurred in cells grown either with or without ascorbate. Direct observation of type IV collagen is consistent with the previous finding of type IV mRNA in cardiac fibroblasts in situ and in freshly isolated populations of these cells.  相似文献   

16.
《The Journal of cell biology》1996,135(5):1415-1426
A number of factors have been implicated in the regulation of tissue- specific collagen fibril diameter. Previous data suggest that assembly of heterotypic fibrils composed of two different fibrillar collagens represents a general mechanism regulating fibril diameter. Specifically, we hypothesize that type V collagen is required for the assembly of the small diameter fibrils observed in the cornea. To test this, we used a dominant-negative retroviral strategy to decrease the levels of type V collagen secreted by chicken corneal fibroblasts. The chicken alpha 1(V) collagen gene was cloned, and retroviral vectors that expressed a polycistronic mRNA encoding a truncated alpha 1(V) minigene and the reporter gene LacZ were constructed. The efficiency of viral infection was 30-40%, as determined by assaying beta- galactosidase activity. To assess the expression from the recombinant provirus, Northern analysis was performed and indicated that infected fibroblasts expressed high steady-state levels of retroviral mRNA. Infected cells synthesized the truncated alpha 1(V) protein, and this was detectable only intracellularly, in a distribution that colocalized with lysosomes. To assess endogenous alpha 1(V) protein levels, infected cell cultures were assayed, and these consistently demonstrated reductions relative to control virus-infected or uninfected cultures. Analyses of corneal fibril morphology demonstrated that the reduction in type V collagen resulted in the assembly of large- diameter fibrils with a broad size distribution, characteristics similar to fibrils produced in connective tissues with low type V concentrations. Immunoelectron microscopy demonstrated the amino- terminal domain of type V collagen was associated with the small- diameter fibrils, but not the large fibrils. These data indicate that type V collagen levels regulate corneal fibril diameter and that the reduction of type V collagen is sufficient to alter fibril assembly so that abnormally large-diameter fibrils are deposited into the matrix.  相似文献   

17.
Ma C  Collodi P 《Cytotechnology》1996,21(3):195-203
Methods were developed for the culture of cells derived from tissues of the sea lamprey (Petromyzon marinus). Cultures were initiated from gill, liver, muscle and gut from larvae and newly transformed individuals and brain, heart, kidney and ovary from sexually mature adults. The lamprey cells were viable for up to six months in culture and cells from ovary, muscle, gut, gill and liver were propagated for multiple passages. For all cultures except liver, optimal cell attachment and spreading was obtained on surfaces coated with fibronectin and collagen. Optimal liver cell attachment was achieved on basement membrane. Cells synthesizing DNA were detected by precursor incorporation in five week-old cultures derived from adult and larval tissues. Metabolic labeling experiments with [35S]-methionine demonstrated that cultures initiated from liver and ovary continued to synthesize and release proteins into the medium for several weeks. Ultrastructural examination revealed the presence of ciliated cells in cultures from brain and the accumulation of lipid in epithelial cells derived from liver and gill.  相似文献   

18.
Samples from the deep dermis of the sea cucumber Cucumaria frondosa were analyzed to determine the concentrations of Na, K, Ca, and Mg in fresh tissues as well as in those that had been incubated in filtered seawater or extracted extensively in deionized water. Fresh tissues were in equilibrium with seawater with respect to the above minerals, and showed a relative concentration of K, Mg, and Ca. Water-extracted tissues were enriched in Mg and Ca and depleted in K and Na. The Ca and Mg could be removed from the tissues by extraction in a divalent cation chelator or in 0.1 M HCl. Biomechanical (creep) tests showed that dermal specimens in which the resident cells had been lysed by freezing and thawing had very low viscosities in buffered solutions of a divalent cation chelator containing either 0.03 M or 1.0 M NaCl. In contrast, their viscosities were quite high in similar solutions containing 0.3 M NaCl. The aggregation of isolated collagen fibrils in the presence of the dermal glycoprotein stiparin showed a similar dependence on the concentration of NaCl: the fibrils aggregated in 0.3 M NaCl, but not in 0.03 or 1.0 M NaCl. The above results are inconsistent with the hypothesis that collagen fibril interactions in C. frondosa dermis are regulated by cellular control of the extracellular [Ca2+]. The results are consistent with the hypothesis that stiparin mediates mechanical interactions between collagen fibrils in dermal tissues as well as in isolated fibrils.  相似文献   

19.
We reported previously that human fibroblasts form clumps when cultured on a dish coated with reconstituted type V collagen fibrils. Essentially all the type V collagen fibrils, initially coated on the dish, were recovered in the cell clumps that had eventually formed during the culture. We interpreted that type V collagen fibrils adhere to cells more strongly than to the dish and are detached by cell movements. In this study, type V collagen was suspended with fibroblasts to examine the fate of the type V collagen fibrils and to determine whether the fibrils affect the behaviour of the cells directly adherent to the dish. The added type V collagen accumulated in the intercellular space concomitantly with the local aggregation of fibroblasts. scanning electron microscope examination indicated that type V collagen fibrils were found in the vicinity of cells in cultures without ascorbic acid where essentially no collagen secretion takes place. These results indicate that type V collagen forms fibrils and the fibrils are accumulated in the intercellular spaces. The accumulated type V collagen fibrils work as a cementing material for cell clump formation. This phenomenon is discussed in relation to the possible involvement of type V collagen fibrils in tissue organization.  相似文献   

20.
In the field of biomechanics, collagen fibrils are believed to be robust mechanical structures characterized by a low extensibility. Until very recently, information on the mechanical properties of collagen fibrils could only be derived from ensemble measurements performed on complete tissues such as bone, skin, and tendon. Here, we measure force-elongation/relaxation profiles of single collagen fibrils using atomic force microscopy (AFM)-based force spectroscopy (FS). The elongation profiles show that in vitro-assembled human type I collagen fibrils are characterized by a large extensibility. Numerous discontinuities and a plateau in the force profile indicate major reorganization occurring within the fibrils in the 1.5- to 4.5-nN range. Our study demonstrates that newly assembled collagen fibrils are robust structures with a significant reserve of elasticity that could play a determinant role in the extracellular matrix (ECM) remodeling associated with tissue growth and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号