首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了阐明眼蝶科内一些存疑类群间的系统发生关系,本研究测定了其中最大的2个亚科锯眼蝶亚科和眼蝶亚科中分布于中国的9族17属21个种的COⅠ和Cytb基因的部分序列,并结合从GenBank中下载的2个国外种类的同源序列,进行了序列变异和系统发生分析。序列分析结果显示:处理后的2基因总长度为1 056 bp,其中保守位点648个,可变位点408个,简约信息位点316个;A+T的平均含量为70.8%,明显高于C+G的平均含量29.2%。以蛱蝶科的2个物种为外群,通过邻接法、最大简约法和贝叶斯法重建了分子系统树,探讨了这两个亚科及其主要类群的系统发生关系,结果表明: 眼蝶亚科、锯眼蝶亚科以及黛眼蝶族均为多系类群;眉眼蝶族和黛眼蝶族应从锯眼蝶亚科分离出来,归入眼蝶亚科;眼蝶族、白眼蝶族和莽眼蝶族可能具有较近的共同祖先;古眼蝶族、眉眼蝶族和矍眼蝶族三者之间具有较近的亲缘关系。  相似文献   

2.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

3.
The 3400 species of Eumolpinae constitute one of the largest subfamilies of leaf beetles (Chrysomelidae). Their systematics is still largely based on late 19th century monographs and remains highly unsatisfactory. Only recently, some plesiomorphic lineages have been split out as separate subfamilies, including the southern hemisphere Spilopyrinae and the ambiguously placed Synetinae. Here we provide insight into the internal systematics of the Eumolpinae based on molecular phylogenetic analyses of three ribosomal genes, including partial mitochondrial 16S and nuclear 28S and complete nuclear 18S rRNA gene sequences. Sixteen morphological characters considered important in the higher-level systematics of Eumolpinae were also included in a combined analysis with the molecular characters. All phylogenetic analyses were performed using parsimony by optimizing length variation directly on the tree, as implemented in the POY software. The data support the monophyly of the Spilopyrinae outside the clade including all sampled Eumolpinae, corroborating their treatment as a separate subfamily within the Chrysomelidae. The systematic placement of the Synetinae remains ambiguous but consistent with considering it a different subfamily as well, since the phylogenetic analyses using all the available evidence show the representative sequence of the subfamily also unrelated to the Eumolpinae. The Megascelini, traditionally considered a separate subfamily, falls within the Eumolpinae. Several recognized taxonomic groupings within Eumolpinae, including the tribes Adoxini or Typophorini, are not confirmed by molecular data; others like Eumolpini seem well supported. Among the morphological characters analyzed, the presence of a characteristic groove on the pygidium (a synapomorphy of the Eumolpini) and the shape of tarsal claws (simple, appendiculate or bifid) stand out as potentially useful characters for taxonomic classification in the Eumolpinae.  相似文献   

4.
本研究选取优茧蜂亚科Euphorinae(膜翅目Hymenoptera:茧蜂科Braconidae)的8族19属23种作为内群,茧蜂其它6个亚科的8属8种作外群,首次结合同源核糖体28S rDNA D2基因序列片段和41个形态学特征对该亚科进行了系统发育学研究。利用"圆口类"的内茧蜂亚科Rogadinae、茧蜂亚科Braconinae、矛茧蜂亚科Doryctinae的3个亚科为根,以PAUP*4.0和MrBayes3.0B4软件分别应用最大简约法(MP)和贝叶斯法对优茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了分析;并以PAUP*4.0对优茧蜂亚科的28S rDNA D2基因序列的片段的碱基组成与碱基替代情况进行了分析。结果表明:优茧蜂亚科的28S rDNA D2基因序列片段的GC%含量在40.00%~49.25%之间变动,而对于碱基替代情况来讲,优茧蜂亚科各个成员间序列变异位点上颠换(transversion)大于转换(transition);不同的分析和算法所产生的系统发育树都表明目前根据形态定义出的优茧蜂亚科Euphorinae不是一个单系群,而是一个与蚁茧蜂亚科Neoneurinae和高腹茧蜂亚科Cenocoelinae混杂在一起的并系群;在优茧蜂亚科内部,悬茧蜂族Meterorini和食甲茧蜂族Microctonini(排除猎户茧蜂属Orionis)为单系群,而宽鞘茧蜂族Centistini、大颚茧蜂族Cosmophorini、优茧蜂族Euphorini、瓢虫茧蜂族Dinocampini为并系群;悬茧蜂族Meterorini在优茧蜂亚科Euphorinae内位于基部位置的观点得到部分的支持,同时食甲茧蜂族Microctonini被判定为相对进化的类群。此外对于优茧蜂亚科内各属之间的相互亲缘关系,不同算法所得到的系统发育属的结果不完全一致,这表明优茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

5.
The family Asclepiadaceae (Dicotyledones) was created by Brown in 1810 by splitting in two the family Apocynaceae of Jussieu established in 1789. The morphological characters used to make this distinction were mainly palynological, such as presence of tetrads or pollinia and number and orientation of pollinia. Those characters, still used in higher taxonomic delimitation (families, subfamilies, and tribes), are here critically reexamined and compared to a molecular phylogeny obtained with one of the more variable plastid genes (matK) of 46 species in the order Gentianales. In this molecular phylogeny, Asclepiadaceae form a monophyletic group derived from within Apocynaceae. Each of the subfamilies of Asclepiadaceae is monophyletic and based on reliable palynological characters, but palynological characters are not useful to delimit tribes of the subfamily Asclepiadoideae. Based on the molecular data, these tribes have undergone parallelisms in several reproductive traits.  相似文献   

6.
The carabid subfamily Harpalinae contains most of the species of carabid beetles. This subfamily, with over 19,000 species, radiated in the Cretaceous to yield a large clade that is diverse in morphological form and ecological habit. While there are several morphological, cytological, and chemical characters that unite most harpalines, the placement of some tribes within the subfamily remains controversial, as does the sister group relationships to this large group. In this study, DNA sequences from the 28S rDNA gene and the wingless nuclear protein-coding gene were collected from 52 carabid genera representing 31 harpaline tribes in addition to more than 21 carabid outgroup taxa to reconstruct the phylogeny of this group. Molecular sequence data from these genes, along with additional data from the 18S rDNA gene, were analyzed with a variety of phylogenetic analysis methods, separately for each gene and in a combined data approach. Results indicated that the subfamily Harpalinae is monophyletic with the enigmatic tribes of Morionini, Peleciini, and Pseudomorphini included within it. Brachinine bombardier beetles are closely related to Harpalinae as they form the sister group to harpalines or, in some analyses, are included within it or with austral psydrines. The austral psydrines are the sister group to Harpalinae+Brachinini clade in most analyses and austral psydrines+Brachinini+Harpalinae clade is strongly supported.  相似文献   

7.
The taxonomic concepts of Blapimorpha and Opatrinae (informal and traditional, morphology‐based groupings among darkling beetles) are tested using molecular phylogenetics and a reassessment of larval and adult morphology to address a major phylogeny‐classification gap in Tenebrionidae. Instead of a holistic approach (family‐level phylogeny), this study uses a bottom‐up strategy (tribal grouping) in order to define larger, monophyletic lineages within Tenebrioninae. Sampling included representatives of 27 tenebrionid tribes: Alleculini, Amarygmini, Amphidorini, Blaptini, Bolitophagini, Branchini, Cerenopini, Coniontini, Caenocrypticini, Dendarini, Eulabini, Helopini, Lagriini, Melanimini, Opatrini, Pedinini, Phaleriini, Physogasterini, Platynotini, Platyscelidini, Praociini, Scaurini, Scotobiini, Tenebrionini, Trachyscelini, Triboliini and Ulomini. Molecular analyses were based on DNA sequence data from four non‐overlapping gene regions: carbamoyl‐phosphate synthetase domain of rudimentary (CAD) (723 bp), wingless (wg) (438 bp) and nuclear ribosomal 28S (1101 bp) and mitochondrial ribosomal 12S (363 bp). Additionally, 15 larval and imaginal characters were scored and subjected to an ancestral state reconstruction analysis. Results revealed that Amphidorini, Blaptini, Dendarini, Pedinini, Platynotini, Platyscelidini and Opatrini form a clade which can be defined by the following morphological features: adults—antennae lacking compound/stellate sensoria; procoxal cavities externally and internally closed, intersternal membrane of abdominal ventrites 3–5 visible; paired abdominal defensive glands present, elongate, not annulated; larvae—prolegs enlarged (adapted for digging); ninth tergite lacking urogomphi. To accommodate this monophyletic grouping (281 genera and ~4000 species), the subfamily Blaptinae sens. nov. is resurrected. Prior to these results, all of the tribes within Blaptinae were classified within the polyphyletic subfamily Tenebrioninae. The non‐monophyletic nature of Terebrioninae has already been postulated by previous authors, yet no taxonomic decisions were made to fix its status. The reinstatement of Blaptinae, which groups ~50% of the former Tenebrioninae, helps to clarify phylogenetic relations among the whole family and is the first step towards a complete higher‐level revision of Tenebrionidae. The Central Asian tribe Dissonomini (two genera, ~30 species) was not included in Blaptinae due to a lack of representatives in the performed phylogenetic analyses; however, based on morphological features, the tribe is listed as a potential addition to the subfamily.  相似文献   

8.
We examined the phylogenetic relationships between species and genera within the caddisfly subfamily Drusinae (Trichoptera: Limnephilidae) using sequence data from two mitochondrial loci (cytochrome oxidase 1, large subunit rRNA) and one nuclear gene (wingless). Sequence data were analysed for 28 species from five genera from the subfamily. We analysed individual and combined data sets using a Bayesian Markov Chain Monte Carlo and a maximum parsimony approach and compared the performance of each partition for resolving phylogenetic relationships at this level. In terms of resolution and phylogenetic utility wingless outperformed the two mitochondrial gene partitions. Using both Shimodaira-Hasegawa and expected likelihood weights tests we tested several hypotheses of relationships previously inferred based on adult morphological characters. The data did not support the generic concept, or many previously proposed species groupings, based on adult morphology. In contrast, the molecular data correlated with the morphology and feeding ecology of larvae. Using Bayesian ancestral character state reconstructions we inferred the evolution of feeding ecology and relevant larval morphological characters. Our analyses showed that within the subfamily Drusinae two derived feeding types evolved. One of these--grazing epilithic algae--is otherwise unusual in the Limnephilidae and may have promoted the high degree of diversity in the Drusinae.  相似文献   

9.
Combined analyses of morphological and molecular data were used to resolve phylogenetic relationships within Macrobiotidae (Eutardigrada). Morphological data were analysed using a cladistic approach with a matrix comprising 15 taxa with 17 characters to obtain a phylogenetic reconstruction. Molecular data were obtained by sequencing the cytochrome c oxidase subunit I gene in seven species of Macrobiotidae and one of Eohypsibiidae (used as outgroup). The morphological character defining the family, symmetrical claw on each leg, turns out to be plesiomorphic. Moreover, neither morphological nor molecular analyses supports a monophyletic clade for the subfamily Macrobiotinae, whereas both support a well defined evolutionary line (Murrayinae) within the family. We propose elevating the latter to family level (Murrayidae) while temporarily retaining as valid the family Macrobiotidae (amending its diagnosis, including within it only Macrobiotinae). Murrayidae opens an interesting evolutionary prospective, because the entire line has differentiated without sexual reproduction, constituting an example of evolution of asexual lineages.  相似文献   

10.
We have inferred the first empirically supported hypothesis of relationships for the cosmopolitan butterfly subfamily Satyrinae. We used 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1alpha and wingless for 165 Satyrinae taxa representing 4 tribes and 15 subtribes, and 26 outgroups, in order to test the monophyly of the subfamily and elucidate phylogenetic relationships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recovered Satyrinae as polyphyletic, and revealed that the current classification of suprageneric taxa within the subfamily is comprised almost completely of unnatural assemblages. The most noteworthy findings are that Manataria is closely related to Melanitini; Palaeonympha belongs to Euptychiina; Oressinoma, Orsotriaena and Coenonympha group with the Hypocystina; Miller's (1968). Parargina is polyphyletic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyrinae. The three gene regions used in a combined analysis prove to be very effective in resolving relationships of Satyrinae at the subtribal and tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribes and subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographical and evolutionary studies.  相似文献   

11.
Pollen and orbicule morphology of 84 species, representing 52 genera from all tribes and subfamilies are investigated, in order to assess the systematic value of palynological data and to determine palynological evolutionary trends in Cyperaceae. A total of 90% of the species are examined for the first time with scanning electron microscopy. Pollen grains of Cyperaceae are oblate spheroidal to perprolate in shape, inaperturate to polyporate with opercula or pontopercula on pori or colpi. We distinguished seven different sexine ornamentation patterns. Orbicules occur in all species investigated. Pollen morphological variation within Cyperaceae is considerable and includes dispersal unit; number, location and degree of differentiation of apertural zones; and sexine ornamentation patterns. In subfamily Mapanioideae both tribes can be characterized by palynological synapomorphies. However, in subfamily Cyperoideae, the observed pattern of variation does not fit the most recent molecular phylogeny due to high levels of homoplasy and polymorphism in major pollen characters.  相似文献   

12.
A comprehensive study based on molecular marker and karyotype analyses has provided evidence for the monophyly of the subfamily Myoxocephalinae, which includes the genera Myoxocephalus, Megalocottus, Microcottus, Porocottus, Enophrys and Argyrocottus. In addition, the karyotype of the threadfoot sculpin Argyrocottus zanderi Herzenstein 1892 has been studied for the first time. Marker traits of karyotypes identified 13 species among six cottid genera. As the molecular genetic results confirmed, the subfamily is divided into two groups corresponding to Enophrys and Myoxocephalus. The molecular genetic data did not support the formation of tribes within the subfamily Myoxocephalinae, as proposed earlier based on morphological characters. Moreover, the genera Trichocottus and Taurocottus should be excluded from the Myoxocephalinae. The evolutionary transformations of karyotypes in cottid fish tended towards a reduction in the number of chromosomes and chromosome arms.  相似文献   

13.
Web-building spiders are formidable predators, yet assassin bugs in the Emesine Complex (Hemiptera: Reduviidae: Emesinae, Saicinae, and Visayanocorinae) prey on spiders. The Emesine Complex comprises >1000 species and these web-associated predatory strategies may have driven their diversification. However, lack of natural history data and a robust phylogenetic framework currently preclude tests of this hypothesis. We combine Sanger (207 taxa, 3865 bp) and high-throughput sequencing data (15 taxa, 381 loci) to generate the first taxon- and data-rich phylogeny for this group. We discover rampant paraphyly among subfamilies and tribes, necessitating revisions to the classification. We use ancestral character state reconstructions for 40 morphological characters to identify diagnostic features for a revised classification. Our new classification treats Saicinae Stål and Visayanocorinae Miller as junior synonyms of Emesinae Amyot and Serville, synonymizes the emesine tribes Ploiariolini Van Duzee and Metapterini Stål with Emesini Amyot and Serville, and recognises six tribes within Emesinae (Collartidini Wygodzinsky, Emesini, Leistarchini Stål, Oncerotrachelini trib.n. , Saicini Stål stat.n. , and Visayanocorini Miller stat.n. ). We show that a pretarsal structure putatively involved in web-associated behaviours evolved in the last common ancestor of Emesini, the most species-rich clade within Emesinae, suggesting that web-associations could be widespread in Emesinae.  相似文献   

14.
A phylogenetic study of representatives of the family Coleophoridae was conducted using a comprehensive approach, including methods of morphological and molecular genetic analyses. The existent data on the family system were compared with the results of phylogenetic analysis of the COI mitochondrial gene sequences. Four of the five studied subfamilies (Coleophorinae, Ischnophaninae, Augasminae, and Tolleophorinae) corresponded to their location on the phylogram; representatives of Metriotinae were part of Coleophorinae. According to the aggregate data from molecular phylogeny and morphology, the most numerous subfamily of casebearers, Coleophorinae, is polyphyletic within its current boundaries. The results of our analysis of COI molecular divergence does not refute the monophyly of the tribes Casignetellini, Carpochenini, Klinzigedini, Goniodomini, Casasini, and Atractulini from the subfamily Coleophorinae. The allocation of the tribes Aporipturini and Sistrophoecini within the subfamily does not correspond to the molecular data. Monophyly of the genera Ecebalia, Perygra, and Casignetella was confirmed. These genera are well isolated, which reflects the evolutionary significance of the morphological characters chosen for their taxonomic division. The boundaries of the cluster containing these genera correspond to those of the tribe Casignetellini, justifying the allocation of this tribe within the subfamily. The existence of monophyletic tribes Goniodomini (genus Goniodoma) and Carpochenini (genera Ionescumia, Carpochena, and Falkmisa) was also supported. The exceptions were the genera Kasyfia, Tollsia, and Agapalsa, whose monophyly was not confirmed by our results. The distribution of the sequences of species of these genera indicated a paraphyletic origin of Kasyfia and Tollsia and a polyphyletic origin of Agapalsa.  相似文献   

15.
The wood anatomy of 15 representative species belonging to 12 genera of nine tribes of the subfamily Crotonoideae (Euphorbiaceae) are comprehensively described with focus on systematic implications. In addition, ecological and evolutionary aspects are evaluated. An identification key to the species based on wood anatomical features is presented. The wood microstructure of the tribes was found to be considerably heterogeneous reflecting an unnatural classification of the subfamily. However, the results confirm the generic relationship within subtribe Aleuritinae and tribe Ricinodendreae. Vernicia and Givotia may be recognized based on wood anatomical and morphological characters. The tribes Micrandreae and Adenoclineae have considerable similarity in wood anatomy. The wood structure of the monogeneric tribes Trigonostemoneae and Geloneae idicate a close relationship with the tribe Crotoneae.  相似文献   

16.
Sciomyzidae is a family of acalyptrate flies with 546 species in 61 genera that is among the most extensively studied groups of higher Diptera. Most of the known larvae are obligate enemies of Gastropoda. Hundreds of studies published over the past 50 years have resulted in detailed information concerning morphology of adults and immature stages, biology, development, behaviour, phenology and distribution. However, studies of phylogenetic relationships are based almost exclusively on morphological characters of adults, and no comprehensive molecular analysis across the family has been published. Here we fill this void by generating and analysing molecular data for 54 species of Sciomyzidae (22 genera), including Phaeomyiidae (one genus), and seven representative species of five other families of Sciomyzoidea (Coelopidae, Dryomyzidae, Helcomyzidae, Heteromyzidae and Huttoninidae) as outgroups. The reconstruction is based on morphological characters as well as nucleotide sequences for genes from the mitochondrial (12S, 16S, COI, COII, Cytb) and nuclear genome (28S, EF1α). The results are compared with recent morphological analyses. Our analyses support the monophyly of Sciomyzidae + Phaeomyiidae, and place Phaeomyiinae as a unique lineage within Sciomyzidae. A modified classification comprising three subfamilies is proposed. The major subfamily, Sciomyzinae, consists of two monophyletic and well separated groups, the tribes Sciomyzini and Tetanocerini.  相似文献   

17.
The phylogenetic relationships within the fungus gnat subfamily Mycetophilinae (Diptera) are addressed using a combined morphological and molecular approach. Twenty-four species, representing nine genera of the tribe Mycetophilini and 15 genera of the tribe Exechiini, were included in the study. Analyses include nucleotide sequences of mitochondrial (cytochrome oxidase I and 16S), and nuclear (18S and 28S rDNA) genes, in addition to 65 morphological characters. A combined parsimony analysis, including all characters, supports the monophyly of the subfamily Mycetophilinae and two of its tribes, Exechiini and Mycetophilini. There is also statistical support for a Mycetophila- group and a Phronia- group within the tribe Mycetophilini. The Phronia- group includes the genera Phronia , Macrobrachius and Trichonta . The Mycetophila- group includes the genera Mycetophila , Epicypta , Platurocypta , Sceptonia and Zygomyia . A Bayesian analysis based on the nucleotide sequences alone also support these clades within Mycetophilini except for the position of Dynatosoma which is recovered as the sister taxon to the Phronia- group. A somewhat different pattern, however, is observed for the tribe Exechiini – neither molecular data nor the combined data set support unambiguously any intergeneric relationships within Exechiini.  相似文献   

18.
Portions of the 12S and 16S mitochondrial ribosomal genes for 16 species representing nine tribes in the mammal family Bovidae were compared with six previously published orthologous sequences. Phylogenetic analysis of variable nucleotide positions under different constraints and weighting schemes revealed no robust groupings among tribes. Consensus trees support previous hypotheses of monophyly for four clades, including the traditional subfamily Bovinae. However, the basal diversification of bovid tribes, which was largely unresolved by morphological, immunodiffusion, allozyme, and protein sequence data, remains unresolved with the addition of DNA sequence data. The intractability of this systematic problem is consistent with a rapid radiation of the major bovid groups. Several analyses of our data show that monophyly of the Bovidae, which was weakly supported by previous morphological and molecular work, is questionable.  相似文献   

19.
Abstract.  Within a framework of historical analysis of Eneopterinae crickets, the genus Pseudolebinthus Robillard gen.n. and two new species P. africanus Robillard, sp.n. and P. whellani Robillard, sp.n. , endemic from south-east Africa, are described. A cladistic analysis using 198 morphological characters and 47 terminals assessed the phylogenetic position of the new taxa within the subfamily. The resultant topologies support the previously proposed phylogeny for the subfamily and contained tribes. The monophyly of Pseudolebinthus is supported strongly as well as its sister relationship with Xenogryllus within the tribe Xenogryllini. A key to Eneopterinae tribes, Xenogryllini genera and Pseudolebinthus species is given. Taxonomic, evolutionary and acoustic issues raised by the recognition of Pseudolebinthus are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号