首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FISH analysis of B chromosome repetitive DNA distribution in A and B chromosomes of two subspecies of Podisma sapporensis (P. s. sapporensis and P. s. krylonensis) was performed. In the B chromosomes, C-positive regions contained homologous DNA repeats present also in some C-positive A chromosome regions. Most C-negative regions contained DNA repeats characteristic of A chromosome euchromatic regions. The two subspecies analyzed differed in the location of A chromosome regions enriched with repeats homologous to repeats of B chromosomes. The only common region enriched with these B chromosome repeats in both subspecies was the X chromosome pericentromeric region. The origin of B chromosomes in P. sapporensis is discussed.  相似文献   

2.
3.
Comparative analysis of micro B and macro B chromosomes of the Korean field mouse Apodemus peninsulae, collected in populations from Siberia and the Russian Far East, was performed with Giemsa, DAPI, Ag-NOR staining and chromosome painting with whole and partial chromosome probes generated by microdissection and DOP-PCR. DNA composition of micro B chromosomes was different from that of macro B chromosomes. All analyzed micro B chromosomes contained clusters of DNA repeats associated with regions characterized by an uncondensed state in mitosis. Giemsa and DAPI staining did not reveal these regions. Their presence in micro B chromosomes led to their special morphology and underestimation in size. DNA repeat clusters homologous to DNA of micro B chromosome arms were also revealed in telomeric regions of some macro B chromosomes of specimens captured in Siberian regions. Neither active NORs nor clusters of ribosomal DNA were found in the uncondensed regions of micro B chromosomes. Possible evolutionary pathways for the origin of macro and micro B chromosomes are discussed.  相似文献   

4.
Using G bands, some homologies between the chromosomes of Cebus apella (CAP) and human chromosomes are difficult to establish. To solve this problem, we analyzed these homologies by fluorescence in situ hybridization using human whole chromosome probes (ZOO-FISH). The results indicated that 1) the human probe for chromosome 2 partially hybridizes with CAP chromosomes 13 and 5, 2) the human probe for chromosome 3 partially hybridizes with CAP chromosomes 18 and 20, 3) the human probe for chromosome 9 partially hybridizes with CAP chromosome 19, and 4) the human probe for chromosome 14 hybridizes with the p-terminal and q-terminal regions of CAP chromosome 6. However, none of the human probes employed hybridized with the heterochromatic regions of CAP chromosomes. For this reason, we characterized the heterochromatic regions of CAP chromosomes and of the chromosomes of Pan troglodytes (PTR), to allow comparison between CAP, PTR, and human chromosomes using in situ digestion of fixed chromosomes with the restriction enzymes AluI, HaeIII, and RsaI and by fluorescent staining with DA/DAPI. The results show that 1) centromeric heterochromatin is heterogeneous in the three species studied and 2) noncentromeric heterochromatin is homogeneous within each of the three species, but is different for each species. Thus, centromeric heterochromatin undergoes a higher degree of variability than noncentromeric heterochromatin.  相似文献   

5.
马尾松染色体荧光带型的研究   总被引:5,自引:0,他引:5  
对马尾松有丝分裂中期染色体荧光带纹的分析结果表明,其色霉素A的染色体的荧光带赤;1对为着丝粒区和臂间我均有带纹的中间着丝染色体。6对为臂间区有带纺的中间着丝粒染色体;2对为着丝粒区有带纹的中间着丝粒染色体;3对无带纹的中间或近中着丝粒染色体;1对为着丝粒区有带纹的近中着丝粒染色体。  相似文献   

6.
Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.  相似文献   

7.
Polytene chromosomes of Chironomus tentans were hybridized in situ with in vivo labelled nuclear and chromosomal RNA. Nuclear RNA formed hybrids preferentially in five distinct regions considered to contain clustered, repeated DNA sequences. These are the two nucleolar organizer regions, Balbiani ring 1 and 2, and the 5 S RNA genes in region 2A of chromosome II, which together comprised almost 70% of the total number of grains over the complement. The remaining grains were diffusely distributed over the chromosomes. There was a significant difference in the distribution of grains when RNA from different chromosomes was used for hybridization. Chromosome I RNA hybridized preferentially with chromosome I, and chromosome II+III RNA preferentially with chromosome II+III. Some regions within the chromosomes hybridized significantly more chromosomal RNA than other regions. A considerable cross-hybridization of RNA from one particular type of chromosome with the other chromosomes was also found. It is concluded that repeated DNA sequences which hybridize with heterogeneous chromosomal RNA in C. tentans are widely dispersed in the genome. Some of these sequences have a delimited localization, others are dispersed, and some sequences which are transcribed in one particular chromosome are present also in the other chromosomes.  相似文献   

8.
Ten cases of small ring chromosomes which did not stain with distamycinA/DAPI and did not possess satellite regions associated with nucleolus-organizing regions are described. In situ hybridization with a battery of biotinylated pericentric repeat probes specific either for individual chromosomes or for groups of chromosomes allowed the identification of the chromosomal origin of these marker chromosomes. There was one example of a marker derived from each of chromosomes 1, 3, 6, 14, 16, 18, 20, 13 or 21, and the X, and there were two examples of markers derived from chromosome 12. One case possessed two markers, one derived from chromosome 6, and one derived from the X. The mechanism of generation of ring marker chromosomes is discussed. Five of seven cases who could be phenotypically assessed were abnormal. Three of these--the first with a ring chromosome derived from chromosome 1; the second with two markers, one derived from chromosome 6 and the other from the X chromosome; and the third with a ring chromosome derived from chromosome 20--each possessed distinctive facies. Additional cases with identified rings may allow the delineation of new chromosomal syndromes.  相似文献   

9.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   

10.
Non-heading Chinese cabbage [Brassica rapa L. ssp. chinensis (L.) Hanelt] is one of the most popular leafy vegetables. Despite the economic importance of non-heading Chinese cabbage, little attention has been given to its cytogenetic profile. This study reveals the karyotype of non-heading Chinese cabbage. Fluorescence in situ hybridization (FISH) with 45S and 5S rDNA probes was performed on mitotic metaphase complementary regions. We located 45S rDNA on the centromeric or adjacent region of chromosomes A1 and A2, with the largest on the satellite of chromosome A5. Meanwhile, 5S rDNA co-localized with 45S rDNA on chromosomes A2 and A5, and on the telomeric region of chromosome A10. We performed DAPI fluorescence banding on the same metaphase chromosomes to identify homologous chromosomes. The DAPI fluorescence pattern was observed mainly on the centromeric heterochromatin regions of each chromosome. However, the lengths of chromosomes A2 and A6 were completely stained, except for their telomeric regions. Meiotic diakinesis chromosomes as new substrates in FISH-developed karyotype were revealed for the first time. The karyotype of non-heading Chinese cabbage reveals that it contains eight submetacentric chromosomes, one subtelocentric chromosome (bearing satellite), and one telocentric chromosome. Diakinetic chromosome pairing can overcome the difficulty of unlabeled chromosome identification. This study provided valuable information for cytogenetic research and molecular breeding of non-heading Chinese cabbage by using the combination of FISH and DAPI fluorescence patterns on mitotic and meiotic chromosomes.  相似文献   

11.
Fluorescent staining patterns of L cell chromosomes with 1-dimethylaminonaphthalene-5-sulfonyl chloride (dansyl chloride) were studied. Ordinary air-dried L cell metaphase chromosomes exhibited relatively uniform and bright yellowish green fluorescence by dansyl-staining under the fluorescence microscope. However, after the chromosome preparations were treated with 10 mM NaCl for 24 h at 4 °C, which produced distinctive G-bands with Giemsa-staining, the centromeric regions and several interstitial regions of some particular chromosomes were clearly fluorescent but other regions showed only dull fluorescence. After the treatment of chromosome slides with cupric sulfite reagent, which converts sulfhydryls and disulfides to thiosulfates chromosomes showed clear G-bands which were indistinguishable from those after 10 mM NaCl treatment. By dansyl-staining, however, the cupric sulfite-treated chromosomes exhibited very faint fluorescence on their contour alone, and neither centromeric regions nor some interstitial regions of marker chromosomes had distinctly bright fluorescence.Although Giemsa-staining disclosed dark chromocenters in approx. 75% of interphase nuclei irrespective of pretreatments, dansyl-staining revealed bright chromocenters in approx. 60% of interphase nuclei in control slides, in about 40% of nuclei in 10 mM NaCl-treated slides, and in only about 30% of nuclei in cupric sulfite-treated preparations.These observations indicated that in the air-dried chromosome preparations, the distribution of protein over the metaphase chromosome is relatively uniform along its length, and that G-bands in the chromosome and Giemsa-staining of chromocenters in interphase nuclei are not significantly affected by apparent loss of protein from the preparations. It was also suggested that particular protein may be associated with the centromeric regions of L cell chromosomes. Some technical details of dansyl fluorochroming and the significance of the observations were discussed.  相似文献   

12.
DNase I sensitivity in facultative and constitutive heterochromatin   总被引:2,自引:0,他引:2  
In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes inMicrotus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. InMicrotus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.  相似文献   

13.
Four rodent species with very large heterochromatic regions on the sex chromosomes have been studied using in situ DNA/DNA hybridization techniques. Repetitious DNA fractions were obtained at C0t 0-0.01. Heterochromatic regions of X and X chromosomes of Cricetulus barabensis and Phodopus sungorus, and the heterochromatic long arm of the Y chromosome of Mesocricetus auratus do not contain disproportionately high amounts of repeated DNA sequences. Heterochromatic regions on sex chromosomes of Microtus subarvalis contain high amounts of repeated DNA sequences. Additional heterochromatic autosomal arms, a heterochromatic arm of the X chromosome, and a short arm of the Y chromosome of Mesocricetus auratus contain high amounts of repeated DNA sequences too.  相似文献   

14.
《遗传学报》2022,49(2):109-119
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of “evolutionary strata”. Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in the older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate such “defeminization” of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females rather than males, which evolved in their common ancestors.  相似文献   

15.
16.
小熊猫染色体异染色质的显示   总被引:4,自引:0,他引:4  
以培养的小熊猫外周淋巴细胞为实验材料,结合C-显带技术及CMA3/DA/DAPI三竽荧光杂色的方法,对小熊猫的染色体组型、C-带带型及CMA3/DA/DAPI荧光带带型进行了研究,发现:(1)经C-显带技术处理,可在小熊猫染色体上呈现出一种极为独特的C-带带型。在多数染色体上可见到丰富的插入C-带及端粒C-带。而着丝区仅显示弱阳性C-带;(2)除着丝粒区外,CMA3诱导的大多数强荧光带纹与C-阳性  相似文献   

17.
Fluram (Fluorescamine; 4-phenylspiro(furan-2(3H),1'-phthalan)-3,3'-dione) is a fluorogenic reagent, which permits the detection of primary amines by forming highly fluorescent pyrrolinone derivatives. This reagent has been used on methanol-acetic acid fixed metaphase chromosomes of mouse and man and proved to be very effective in differentiating chromosome regions in both genomes. Mouse centromeric heterochromatin is highly reactive, showing intense fluorescence in all centromeric regions, whereas human chromosomes show no fluorescence in such regions. In addition, a G-like banding pattern is also obtained in both types of chromosomes. The differential reactivity of each chromosome region showed by this method demonstrates a heterogeneous distribution of chromosome proteins, resulting in a chromosome banding pattern, which is in this case species dependent.  相似文献   

18.
An analysis of the pattern of association of acrocentric chromosomes with nonacrocentric chromosomes in human lymphocyte metaphases was performed. This pattern in nonrandom with respect to chromosome length and intrachromosomal distribution. There is a general preference for the centric regions, most pronounced at the proximal segments of the long arms of chromosomes 1, 9, and 16, which is interpreted to reflect heterochromatin attraction during interphase. Comparison of the association patterns of homologous chromosome 1's differing with regard to the size of their heterochromatic regions corroborates this interpretation. The possible significance of heterochromatin attraction for the formation of spontaneous and induced chromosome anomalies is discused.  相似文献   

19.
Sex chromosomes turn over rapidly in some taxonomic groups, where closely related species have different sex chromosomes. Although there are many examples of sex chromosome turnover, we know little about the functional roles of sex chromosome turnover in phenotypic diversification and genomic evolution. The sympatric pair of Japanese threespine stickleback (Gasterosteus aculeatus) provides an excellent system to address these questions: the Japan Sea species has a neo-sex chromosome system resulting from a fusion between an ancestral Y chromosome and an autosome, while the sympatric Pacific Ocean species has a simple XY sex chromosome system. Furthermore, previous quantitative trait locus (QTL) mapping demonstrated that the Japan Sea neo-X chromosome contributes to phenotypic divergence and reproductive isolation between these sympatric species. To investigate the genomic basis for the accumulation of genes important for speciation on the neo-X chromosome, we conducted whole genome sequencing of males and females of both the Japan Sea and the Pacific Ocean species. No substantial degeneration has yet occurred on the neo-Y chromosome, but the nucleotide sequence of the neo-X and the neo-Y has started to diverge, particularly at regions near the fusion. The neo-sex chromosomes also harbor an excess of genes with sex-biased expression. Furthermore, genes on the neo-X chromosome showed higher non-synonymous substitution rates than autosomal genes in the Japan Sea lineage. Genomic regions of higher sequence divergence between species, genes with divergent expression between species, and QTL for inter-species phenotypic differences were found not only at the regions near the fusion site, but also at other regions along the neo-X chromosome. Neo-sex chromosomes can therefore accumulate substitutions causing species differences even in the absence of substantial neo-Y degeneration.  相似文献   

20.
Summary Prior studies have shown a preferential decondensation (or fragmentation) of the heterochromatic long arm of the X chromosome of Chinese hamster ovary cells when treated with carcinogenic crystalline NiS particles (crNiS). In this report, we show that the heterochromatic regions of mouse chromosomes are also more frequently involved in aberrations than euchromatic regions, although the heterochromatin in mouse cells is restricted to centromeric regions. We also present the karyotypic analyses of four cell lines derived from tumors induced by leg muscle injections of crystalline nickel sulfide which have been analyzed to determine whether heterochromatic chromosomal regions are preferentially altered in the transformed genotypes. Common to all cell lines was the presence of minichromosomes, which are acrocentric chromosomes smaller than chromosome 19, normally the smallest chromosome of the mouse karyotype. The minichromosomes were present in a majority of cells of each line although the morphology of this extra chromosome varied significantly among the cell lines. C-banding revealed the presence of centromeric DNA and thus these minichromosomes may be the result of chromosome breaks at or near the centromere. In three of the four lines a marker chromosome could be identified as a rearrangement between two chromosomes. In the fourth cell line a rearranged chromosome was present in only 15% of the cells and was not studied in detail. One of the three major marker chromosomes resulted from a centromeric fusion of chromosome 4 while another appeared to be an interchange involving the centromere of chromosome 2 and possibly the telomeric region of chromosome 17. The third marker chromosome involves a rearrangement between chromosome 4 near the telomeric region and what appears to be the centromeric region of chromosome 19. Thus, in these three major marker chromosomes centromeric heterochromatic DNA is clearly implicated in two of the rearrangements and less clearly in the third. The involvement of centromeric DNA in the formation of even two of four markers is consistent with the previously observed preference in the site of action of crNiS for heterochromatic DNA during the early stages of carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号