首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary Red blood cells of certain species of animals, such as dogs and cats, contain low potassium and high sodium, whereas the erythropoietic stem cells giving rise to these cells are of high potassium type. This paper examines the sequence of membrane transport changes during erythropoiesis by analyzing the K, Na and Fe in single bone marrow cells, reticulocytes and mature red blood cells with X-ray microanalysis. The relationship between K/Na ratios and Fe/(K+Na) ratios were examined by X-ray microanalysis. The K/Na ratios give a measure of the membrane cation transport function. The Fe/(K+Na), which is analogous to hemoglobin concentration, gives an index of maturation stage. The relationships between K/Na and Fe/(K+Na) in the marrow cells of normal adult dog and those of a phenylhydrazine-injected dog with accelerated erythropoiesis show that the modification of cation composition occurs after the initiation of hemoglobin synthesis but before its completion. Similar relationships in the reticulocytes obtained from phenylhydrazine-injected dogs as well as from newborn dogs show a consistent decrease in K/Na with increased Hb, indicating a drastic change in cation composition during the maturation of the reticulocytes. Therefore the modification in membrane transport function must have occurred before or during the formation of reticulocytes.  相似文献   

2.
Rat erythropoiesis was experimentally depressed by repeated doses of cyclophosphamide (CY) or by restriction of food consumption and the diagnostic value of quantitative haematology examinations of rat marrow erythroid morphology was evaluated. A slight depression of rat erythropoiesis (following a dose of 5 mg/kg/day) as well as a higher one (15 mg/kg/day) and the following recovery were determined by a quantitation of marrow erythroid morphology and by peripheral reticulocyte counts, yet a lower validity of peripheral erythrocyte and marrow relative erythroid cell counts was obtained; erythrocyte counts did not change even after a high depletion of marrow erythroid cells. The restriction of food consumption led to a similar depression of rat marrow erythropoiesis as that observed after CY administration. Our data may suggest that the quantitation of marrow erythroid morphology and peripheral reticulocyte counts are desirable in haematological examinations in preclinical safety evaluations performed on rats provided a new drug administered in repeated doses can be cytotoxic.  相似文献   

3.
It is found that nitrite-ions formed as a result of biotransformation during long term feeding of calves with sodium and potassium nitrates induce changes in some biochemical parameters of blood, including HS-glutathione content in erythrocytes, acid hemolytic resistance of erythrocytes, activity of NAD-dependent methemoglobin-reductase, correlation of ligand forms of hemoglobin and its total content. It is supposed that the observed changes are of an adaptational character and, as a whole, provide for the optimization of both quantitative and qualitative composition of population of erythroid cells at the expense of erythropoiesis intensification.  相似文献   

4.
Erythropoiesis has been studied in three patients with sideroblastic anaemia and one case of erythraemic myelosis. The marrows showed erythroid hyperplasia, plasma iron turnover was high, red cell iron utilization low, and retention of 59Fe prolonged in the marrow. A combined quantitative cytochemical and autoradiographic analysis showed an accumulation of early polychromatic cells in G2 and the presence of several cells which were apparently arrested after a period in DNA synthesis. DNA synthesis was rarely seen in cells with pronounced siderotic deposits. These results indicate the presence of ineffective erythropoiesis with a disturbance in the progress of early polychromatic cells through interphase, probably leading to intra-marrow cell death. In erythraemic myelosis there was also a reduced red cell production due to faults of cell division; the nature and consequence of the bizarre forms of cell replication are discussed.  相似文献   

5.
Induced erythropoiesis in the mouse spleen was employed to study chromosomal protein synthesis during erythroid cell development. Splenic erythropoiesis occurring after phenylhydrazine induced hemolysis can be divided into an early phase during which nuclear RNA polymerase activity and RNA production are maximal and a late phase in which hemoglobin synthesis and DNA accumulation are maximal. Chromatin was isolated from splenic tissue during both the early and late phases of erythropoiesis as well as from non-anemic animals. The total protein content of chromatin from the early erythroid phase was greater than that of chromatin from the late erythroid phase or from non-anemic controls. The increase was due to a coordinate increase in the concentration of both histone and nonhistone proteins. During late erythropoiesis, the concentration of each returned to pre-anemic levels. Total histone synthesis increased 2.6-fold during early erythropoiesis as compared with the pre-anemic state and remained elevated in late erythropoiesis. The increase in histone synthesis was due to an increase in the synthesis of all five major histone proteins. Nonhistone protein synthesis was more active than that of histones in the pre-anemic spleen and rose only slightly during early erythropoiesis, returning to preanemic levels during late erythropoiesis. Fractionation of nonhistone proteins on SDS-urea polyacrylamide gels revealed complex patterns with significant differences between the pattern of erythroid spleen non-histone proteins and that of the pre-anemic spleen. Analysis of the incorporation of 3H-valine into the non-histone proteins indicated that during early erythropoiesis there was a generalized increase in nonhistone protein synthesis. During the late erythroid phase, the decline in non-histone protein synthesis was most marked for the higher molecular weight proteins.  相似文献   

6.
Summary Rubidium uptake was measured in single erythroid and myeloid cells of rabbit by means of X-ray microanalysis. It was found in the nucleated bone marrow cells that after incubation in rubidium the sums of potassium and rubidium concentrations were similar to the original potassium concentrations, indicating that there was one-to-one replacement of potassium by rubidium. Although the nuclear potassium and rubidium concentrations were higher than those in the cytoplasm, the nuclear and cytoplasmic ratios of K/Rb were similar. This implies that the potassium in both compartments exchanged freely with rubidium. In the erythroid line of cells there was a continuous reduction of potassium transport activity during the maturation process as indicated by the decrease in rubidium uptake rates. The uptake was measured in seven groups of cell types that could be distinguished on the basis of morphology and chemical composition. The order of the groups from high to low rubidium uptake were: esosinophilic myelocyte > early erythroblast and thinrimmed erythroblast > late erythroblast > early bone marrow red cell > late bone marrow red cell > peripheral blood red cell. Thus, there is a continuous decrease in rubidium transport as the erythroid cells mature.  相似文献   

7.
Vitamin A deficiency produces anemia and altered iron status. In this study with rats we tested two hypotheses regarding vitamin A deficiency: (1) that it impairs erythropoiesis, leading to an increased red cell turnover, and (2) that it inhibits the glycosylation of transferrin. Erythropoietic activity was assessed indirectly by determining the myeloid:erythroid ratio in bone marrow smears, the number of erythroid colonies in the red pulp of spleen, the blood reticulocyte index, and zinc protoporphyrin and plasma transferrin receptor concentrations. Transferrin glycosylation was assessed by measuring the sialic acid content of transferrin. The effects of vitamin A deficiency were compared with those of iron deficiency. Iron deficiency produced anemia and low iron levels in organs. Vitamin A deficiency produced low levels of plasma and hepatic retinol, and it induced decreased plasma total iron-binding capacity and raised iron levels in tibia and spleen. Short- but not long-term iron deficiency reduced the number of erythroid colonies in spleen; vitamin A deficiency had no influence. Neither iron nor vitamin A deficiency influenced the myeloid:erythroid ratio in bone marrow smears and the blood reticulocyte production. Plasma transferrin receptor and erythrocyte zinc protoporphyrin concentrations were not affected by vitamin A deficiency but increased with iron deficiency. Vitamin A deficiency did not stimulate erythrocyte breakdown, as indicated by unaltered plasma lactate dehydrogenase activity and reduced plasma total bilirubin levels. Both vitamin A and iron deficiencies raised the proportion of multiple sialylated transferrins in plasma. Thus, we have not found evidence that vitamin A deficiency affects erythropoiesis and erythrocyte turnover. The iron accumulation in spleen and bone marrow may be related to reduced iron transport due to inhibition of transferrin synthesis rather than inhibition of transferrin sialylation.  相似文献   

8.
The intracellular sodium and potassium concentrations and membrane transport properties for these ions were investigated in red blood cells from newborn puppies and adult dogs. At birth the intracellular concentrations of sodium and potassium are much higher than those found in adult dog red cells. During the first few weeks of life the intracellular concentrations of these ions gradually decrease until the adult level is reached. Changes in the membrane transport properties develop concurrently. The rate of active potassium influx, as measured by ouabain-sensitivity, and the pump to leak ratio are greater in red cells from newborn puppies than in those from adult animals. No ouabain-sensitive sodium efflux could be demonstrated in red cells from older puppies or adult dogs. When either puppy or adult dog red cells are depleted of ATP (by incubation at 37°C with no substrate), potassium permeability increases, and the permeability of the membrane to sodium decreases. The addition of adenosine reverses the effect of depletion.  相似文献   

9.
10.
The high mobility group (HMG) chromosomal proteins may modulate the structure of distinct regions in chromatin, thereby affecting processes such as development and differentiation. Here we report that the levels of the HMG chromosomal proteins and their mRNAs change significantly during erythropoiesis. Erythroid cells from 5-day chicken embryos contain 2.5-10 times more HMG mRNAs than cells from 14-day embryos, whereas circulating cells from adult animals are devoid of HMG and most other mRNAs. Nuclear run-off experiments and Northern analysis of RNA from various developmental stages and from Percoll-fractionated cells indicate that the genes are transcribed in early cells of either the primitive or definitive erythroid lineage. The rate of synthesis of the various HMGs changes during erythropoiesis; in erythroid cells from 7-day embryos the ratio of HMG-14b or HMG-17 to HMG-14a is, respectively, 8 and 10 times lower than in 9-day erythroids. HMG-14a, the major chicken HMG-14 species, is synthesized mainly in primitive cells, while HMG-14b is preferentially synthesized in definitive cells. Thus, the change from primitive to definitive erythroid lineage during embryogenesis is accompanied by a change in the expression of HMG chromosomal proteins. Conceivably, these changes may affect the structure of certain regions in chromatin; however, it is not presently clear whether the switch in HMG protein gene expression is a consequence or a prerequisite for proper differentiation.  相似文献   

11.
Combined morphological and analytical studies with the EMMA-4 analytical electron microscope have enabled very early erythroid cells to be identified within the cortex of enlarging thymic lobes of Quelea quelea. These early erythroid cells have pale cytoplasm (sometimes with ferritin-like crystals present), slightly pachychromatic nuclei and have fewer cell organelles (mitochondria) than lymphocytes. Counts for iron were approximately 70% lower than counts from mature erythrocytes found free in the cortex. Iron was also recorded from some epithelial reticular cells and pyknotic nuclei; no iron was recorded from small lymphocytes (thymocytes) in the cortex. The presence of very early erythroid cells is a further indication that erythropoiesis occurs in situ in the avian thymus.  相似文献   

12.
3H-thymidine incorporation into normoblasts, proliferation rate of erythroid precursors and degree of intramarrow hemolysis have been studied in vitro on the bone marrow. The normal proliferation rate of normoblasts is 26 +/- 2% i.e. during 24 hours about a quarter of dividable elements of erythropoiesis is renewed. Acute blood loss increases the proliferation rate up to 57 +/- 9% but the value of 3H-thymidine incorporation into cells is not changed as compared to normal. In chronic blood loss both 3H-thymidine incorporation into dividing erythroid precursors at different stages of maturity and the rate of erythroid production are 2 to 3 times lower than normal. In healthy persons the degree of intramarrow hemolysis is 7 +/- 2% of erythroid precursors incubated for 24 hours. In iron deficiency anemia intramarrow destruction sharply increases, presenting at an average 30% of incubated nucleated elements of erythropoiesis. A type of chronic iron deficiency, which is not associated with blood loss, is described. In this type of anemia the proliferation rate of normoblasts and the degree of intramarrow hemolysis do not differ from normal values.  相似文献   

13.
14.
Bromide uptake was measured in single maturing erythroblastic cells of rabbits by means of X-ray microanalysis. Increase in bromide uptake as the cells matured was observed. The order of cells from low to high bromide uptake was: early erythroblast less than late erythroblast less than marrow red cells less than peripheral red blood cells. The transition from low to high bromide uptake is correlated to the accumulation of iron which begins in the late erythroblast. A decrease in rubidium uptake also occurs as iron accumulates in the cell. These results indicate that the anion and cation transport changes during maturation are parallel in time course but opposite in direction. In addition, the increase in bromide uptake can be accounted for by the increase in surface-to-volume ratios of the cells. Surface-to-volume ratios were estimated by morphometric techniques.  相似文献   

15.
We studied the relationship between heme accumulation and globin synthesis in human erythroid precursors which were stimulated by 2 I.U. of erythropoietin in semi-solid cultures (1% methyl-cellulose, 20% fetal calf serum) and treated with 6-9 micrograms/ml of desferrioxamina (DF), a potent inhibitor of heme synthesis (6). Heme accumulation was detected by specific reaction with benzidine (4), globin synthesis by CM-cellulose column chromatography. Our results demonstrate that globin gene expression occurs in DF-treated erythroid cells which do not accumulate heme molecules. As heme does affect translation and stability of globin mRNA (10) our system might be suitable for studies focused on pathological alterations of erythropoiesis associated with the presence of unstable globin mRNAs and/or unstable globins.  相似文献   

16.
Summary Bromide uptake was measured in single maturing erythroblastic cells of rabbits by means of X-ray microanalysis. Increase in bromide uptake as the cells matured was observed. The order of cells from low to high bromide uptake was: early erythroblast相似文献   

17.
We studied the ability of inducers and inhibitors of erythroid differentiation of K562 leukemia cells, such as sodium butyrate, dimethyl sulfoxide, and phorbol-12-myristate-13-acetate, respectively, to modulate sensitivity of these cells to non-specific lysis (non-restricted with respect to antigens of the major histocompatibility complex) mediated by natural human or rat killer cells. Unfractionated leukocytes from human peripheral blood or rat splenocytes were used as sources of natural killers. The induction of erythroid differentiation by sodium butyrate was accompanied by a significant increase in cell sensitivity to lysis with human peripheral blood lymphocytes; incubation of K562 cells in the mixture of sodium butyrate and dimethyl sulfoxide did not change cell sensitivity to lysis by both types of effector cells. The inhibition of sodium butyrate-induced erythroid differentiation with high doses of phorbol-12-myristate-13-acetate (100 nM; incubation was in the presence of both these agents simultaneously) resulted in an increased cell sensitivity to lysis with rat splenocytes. Incubation of K562 cells in a mixture of sodium butyrate, dimethyl sulfoxide, and phorbol-12-myristate-13-acetate (100 nM) produced greater lysis by human leukocytes, as compared with incubation in the mixture of sodium butyrate and dimethyl sulfoxide.  相似文献   

18.
We studied the ability of inducers and inhibitors of erythroid differentiation of K562 leukemia cells, such as sodium butyrate, dimethyl sulfoxide, and phorbol-12-myristate-13-acetate, respectively, to modulate sensitivity of these cells to nonspecific lysis (nonrestricted with respect to antigens of the major histocompatibilty complex) mediated by natural human or rat killer cells. Unfractionated leukocytes from human peripheral blood or rat splenocytes were used as sources of natural killers. The induction of erythroid differentiation by sodium butyrate was accompanied by a significant increase in cell sensitivity to lysis with human peripheral blood lymphocytes; incubation of K562 cells in the mixture of sodium butyrate and dimethyl sulfoxide did not change cell sensitivity to lysis by both types of effector cells. The inhibition of sodium butyrate-induced erythroid differentiation with high doses of phorbol-12-myristate-13-acetate (100 nM; incubation was in the presence of both these agents simultaneously) resulted in an increased cell sensitivity to lysis with rat splenocytes. Incubation of K562 cells in a mixture of sodium butyrate, dimethyl sulfoxide, and phorbol-12-myristate-13-acetate (100 nM) produced greater lysis by human leukocytes, as compared with incubation in the mixture of sodium butyrate and dimethyl sulfoxide.  相似文献   

19.
20.
UCP2, an inner membrane mitochondrial protein, has been implicated in bioenergetics and reactive oxygen species (ROS) modulation. High levels of UCP2 mRNA were recently found in erythroid cells where UCP2 is hypothesized to function as a facilitator of heme synthesis and iron metabolism by reducing ROS production. We examined UCP2 protein expression and role in mice erythropoiesis in vivo. UCP2 was mainly expressed at early stages of erythroid maturation when cells are not fully committed in heme synthesis. Iron incorporation into heme was unaltered in reticulocytes from UCP2-deficient mice. Although heme synthesis was not influenced by UCP2 deficiency, mice lacking UCP2 had a delayed recovery from chemically induced hemolytic anemia. Analysis of progenitor cells from bone marrow and fetal liver both in vitro and in vivo revealed that UCP2 deficiency results in a significant decrease in cell proliferation at the erythropoietin-dependent phase of erythropoiesis. This was accompanied by reduction in the phosphorylated form of ERK, a ROS-dependent cytosolic regulator of cell proliferation. Analysis of ROS in UCP2 null erythroid cells revealed altered distribution of ROS, resulting in decreased cytosolic and increased mitochondrial ROS. Restoration of the cytosol oxidative state of erythroid progenitor cells by the pro-oxidant Paraquat reversed the effect of UCP2 deficiency on cell proliferation in in vitro differentiation assays. Together, these results indicate that UCP2 is a regulator of erythropoiesis and suggests that inhibition of UCP2 function may contribute to the development of anemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号