首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human herpesvirus 8 (HHV-8), also called Kaposi's sarcoma (KS) herpesvirus, can cause KS but is inefficient. Untreated human immunodeficiency virus type 1 (HIV-1) coinfection is a powerful risk factor. The HHV-8 chemokine receptor, vGPCR (ORF74), activates NF-kappaB and NF-AT, and their levels of activation are synergistically increased by HIV-1 Tat. Transgenic vGPCR mice develop KS-like tumors. A cell line derived from one such tumor expresses vGPCR and forms tumors in nude mice. Here we show that transfection of DNA encoding HIV-1 tat (but not a transactivation-defective mutant) into these tumor cells increases NF-kappaB and NF-AT activation levels and accelerates tumor formation. Tumorigenesis was also accelerated when Tat DNA was transfected into normal cells and the transfected cells were mixed with the tumor cells and injected into a single site. Tumorigenesis was also increased when the two cell types were injected at separate sites, suggesting that tumorigenesis is accelerated by Tat through soluble factors.  相似文献   

2.
HHV-8-GPCR is a chemokine-like receptor encoded by KSHV, the etiologic agent of KS. HHV-8-GPCR is constitutively active. Although it is homologous to mammalian CXCR2, it binds CXC and CC chemokines. Structure-function analysis showed that chemokines bind primarily to the amino terminus whereas signaling occurs in the absence of: the amino terminus, which is, therefore, not a tethered agonist. In in vitro systems, HHV-8-GPCR signals via multiple transduction pathways including, activation of phospholipase C and PKC, inhibition of adenylyl cyclase, activation of nuclear factor-κB; activation PI 3-kinase, p42/44 MAPK and Akt/PKB, and activation of JNK/SAPK, p38 MAPK and RAFTK. HHV-8-GPCR is important in the HHV-8 life cycle because HHV-8-GPCR-deficient viruses do not replicate in response to chemokines and exhibit, less efficient reactivation from latency. Although the role of HHV-8-GPCR in the pathogenesis of KS has not been defined, expression of HHV-8-GPCR resulted in the development of angioproliferative, KS-like tumors in transgenic mice. As endothelial cells may be targets of HHV-8 infection, HHV-8-GPCR has been studied in endothelial cells in vitro in which it affects cell adhesion and migration, increases cell survival, and stimulates secretion of proinflammatory cytokines and proangiogenic factors. Based on these findings and the observation that HHV-8-GPCR is expressed in only a few endothelial- like "spindle cells" within KS lesions, we propose that HHV-8-GPCR is involved in KS pathogenesis by stimulating secretion of proinflammatory/proangiogenic factors that act in a paracrine fashion to cause tumorigenesis.  相似文献   

3.
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is etiologically associated with KS, the most common AIDS-related malignancy. KS is characterized by vast angiogenesis and hyperproliferative spindle cells. We have previously reported that HIV-1 Tat can trigger KSHV reactivation and accelerate Kaposin A-induced tumorigenesis. Here, we explored Tat promotion of KSHV vIL-6-induced angiogenesis and tumorigenesis. Tat promotes vIL-6-induced cell proliferation, cellular transformation, vascular tube formation and VEGF production in culture. Tat enhances vIL-6-induced angiogenesis and tumorigenesis of fibroblasts and human endothelial cells in a chicken chorioallantoic membrane (CAM) model. In an allograft model, Tat promotes vIL-6-induced tumorigenesis and expression of CD31, CD34, SMA, VEGF, b-FGF, and cyclin D1. Mechanistic studies indicated Tat activates PI3K and AKT, and inactivates PTEN and GSK-3β in vIL-6 expressing cells. LY294002, a specific inhibitor of PI3K, effectively impaired Tat’s promotion of vIL-6-induced tumorigenesis. Together, these results provide the first evidence that Tat might contribute to KS pathogenesis by synergizing with vIL-6, and identify PI3K/AKT pathway as a potential therapeutic target in AIDS-related KS patients.  相似文献   

4.
5.

Background

Unlike CD4+ T cells, HIV-1 infected macrophages exhibit extended life span even upon stress, consistent with their in vivo role as long-lived HIV-1 reservoirs.

Results

Here, we demonstrate that PI3K/Akt inhibitors, including clinically available Miltefosine, dramatically reduced HIV-1 production from long-living virus-infected macrophages. These PI3K/Akt inhibitors hyper-sensitize infected macrophages to extracellular stresses that they are normally exposed to, and eventually lead to cell death of infected macrophages without harming uninfected cells. Based on the data from these Akt inhibitors, we were able to further investigate how HIV-1 infection utilizes the PI3K/Akt pathway to establish the cytoprotective effect of HIV-1 infection, which extends the lifespan of infected macrophages, a key viral reservoir. First, we found that HIV-1 infection activates the well characterized pro-survival PI3K/Akt pathway in primary human macrophages, as reflected by decreased PTEN protein expression and increased Akt kinase activity. Interestingly, the expression of HIV-1 or SIV Tat is sufficient to mediate this cytoprotective effect, which is dependent on the basic domain of Tat – a region that has previously been shown to bind p53. Next, we observed that this interaction appears to contribute to the downregulation of PTEN expression, since HIV-1 Tat was found to compete with PTEN for p53 binding; this is known to result in p53 destabilization, with a consequent reduction in PTEN protein production.

Conclusion

Since HIV-1 infected macrophages display highly elevated Akt activity, our results collectively show that PI3K/Akt inhibitors may be a novel therapy for interfering with the establishment of long-living HIV-1 infected reservoirs.  相似文献   

6.
7.
8.
Infection with human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma (KS)-associated herpesvirus, is necessary for the development of KS. The HHV-8 lytic-phase gene ORF74 is related to G protein-coupled receptors, particularly interleukin-8 (IL-8) receptors. ORF74 activates the inositol phosphate/phospholipase C pathway and the downstream mitogen-activated protein kinases, JNK/SAPK and p38. We show here that ORF74 also activates NF-kappaB independent of ligand when expressed in KS-derived HHV-8-negative endothelial cells or primary vascular endothelial cells. NF-kappaB activation was enhanced by the chemokine GROalpha, but not by IL-8. Mutation of Val to Asp in the ORF74 second cytoplasmic loop did not affect ligand-independent signaling activity, but it greatly increased the response to GROalpha. ORF74 upregulated the expression of NF-kappaB-dependent inflammatory cytokines (RANTES, IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor) and adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Supernatants from transfected KS cells activated NF-kappaB signaling in untransfected cells and elicited the chemotaxis of monocytoid and T-lymphoid cells. Expression of ORF74 conferred on primary endothelial cells a morphology that was strikingly similar to that of spindle cells present in KS lesions. Taken together, these data, demonstrating that ORF74 activates NF-kappaB and induces the expression of proangiogenic and proinflammatory factors, suggest that expression of ORF74 in a minority of cells in KS lesions could influence uninfected cells or latently infected cells via autocrine and paracrine mechanisms, thereby contributing to KS pathogenesis.  相似文献   

9.
Kaposi's sarcoma (KS)-associated herpesvirus or human herpes virus 8 is considered the etiological agent of KS, a highly vascularized neoplasm that is the most common tumor affecting HIV/AIDS patients. The KS-associated herpesvirus/human herpes virus 8 open reading frame 74 encodes a constitutively active G protein-coupled receptor known as vGPCR that binds CXC chemokines with high affinity. In this study, we show that conditional transgenic expression of vGPCR by cells of endothelial origin triggers an angiogenic program in vivo, leading to development of an angioproliferative disease that resembles KS. This angiogenic program consists partly in the expression of the angiogenic factors placental growth factor, platelet-derived growth factor B, and inducible NO synthase by the vGPCR-expressing cells. Finally, we show that continued vGPCR expression is essential for progression of the KS-like phenotype and that down-regulation of vGPCR expression results in reduced expression of angiogenic factors and regression of the lesions. Together, these findings implicate vGPCR as a key element in KS pathogenesis and suggest that strategies to block its function may represent a novel approach for the treatment of KS.  相似文献   

10.
11.
12.
The interaction of human immunodeficiency virus type 1 (HIV-1) with CD4+ T lymphocytes is well studied and typically results in virally induced cytolysis. In contrast, relatively little is known concerning the interplay between HIV-1 and microglia. Recent findings suggest that, counter-intuitively, HIV-1 infection may extend the lifespan of microglia. We developed a novel cell line model system to confirm and mechanistically study this phenomenon. We found that transduction of a human microglial cell line with an HIV-1 vector results in a powerful cytoprotective effect following apoptotic challenge. This effect was reproduced by ectopic expression of a single virus-encoded protein, Tat. Subsequent studies showed that the pro-survival effects of intracellular Tat could be attributed to activation of the PI-3-kinase (PI3K)/Akt pathway in the microglial cell line. Furthermore, we found that expression of Tat led to decreased expression of PTEN, a negative regulator of the PI-3-K pathway. Consistent with this, decreased p53 activity and increased E2F activity were observed. Based on these findings, a model of possible regulatory circuits that intracellular Tat and HIV-1 infection engage during the cytoprotective event in microglia has been suggested. We propose that the expression of Tat may enable HIV-1 infected microglia to survive throughout the course of infection, leading to persistent HIV-1 production and infection in the central nervous system.  相似文献   

13.
14.
15.
16.
Our previous studies using differential mRNA display have shown that interferon-gamma-inducible GTPase (IGTP), was up-regulated in coxsackievirus B3 (CVB3)-infected mouse hearts. In order to explore the effect of IGTP expression on CVB3-induced pathogenesis, we have established a doxycycline-inducible Tet-On HeLa cell line overexpressing IGTP and have analyzed activation of several signaling molecules that are involved in cell survival and death pathways. We found that following IGTP overexpression, protein kinase B/Akt was strongly activated through phosphorylation, which leads to phosphorylation of glycogen synthase kinase-3 (GSK-3). Furthermore, in the presence of CVB3 infection, the intensity of the phosphorylation of Akt was further enhanced and associated with a delayed activation of caspase-9 and caspase-3. These data indicate that IGTP expression appears to confer cell survival in CVB3-infected cells, which was confirmed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt cell viability assay. However, the ability of IGTP to induce phosphorylation of Akt and to promote cell survival was attenuated by the phosphotidylinositol-3 kinase (PI3-K) inhibitor LY294002. Transient transfection of the cells with a dominant negative Akt construct followed by doxycycline induction and CVB3 infection reversed Akt phosphorylation to basal levels and returned caspase-3 activity to levels similar to those when the PI3-K inhibitor LY294002 was added. Moreover, IGTP expression inhibited viral replication and delayed CVB3-induced cleavage of eukaryotic translation initiation factor 4G, indicating that IGTP-mediated cell survival relies on not only the activation of PI3-K/Akt, inactivation of GSK-3 and suppression of caspase-9 and caspase-3 but also the inhibition of viral replication.  相似文献   

17.
Strategies able to down-regulate the aberrant expression of cyclin D1 may prove of therapeutic relevance in cancer patients. This is particularly true for mantle cell lymphoma (MCL) in which cyclin D1 is overexpressed as a consequence of the t(11;14)(q13;q32) translocation. We have recently demonstrated that an increased cyclin D1 stability also contributes to the high levels of this protein observed in MCL cells. This effect is mediated by a constitutive activation of PI3-K/Akt, which keeps GSK-3b inhibited. Here we show that inhibition of PI3-K/Akt induces a 40% decrease of cyclin D1 half-life as a result of accumulation of the dephosphorylated/active form of GSK-3b within the nucleus, where this kinase can phosphorylate cyclin D1 on Thr286 thereby promoting its nuclear export. Translocation of cyclin D1 into the cytoplasm is mediated by the nuclear exportin CRM1, whose association with cyclin D1 increases following PI3-K/Akt inhibition. Notably, rapamycin down-regulated GSK-3b Ser9 phosphorylation with concurrent nuclear export of cyclin D1 only in MCL cells in which GSK-3b is under the control of mTOR. These findings suggest that the ability to down-regulate cyclin D1 through GSK-3b may identify subsets of MCL patients who may benefit from the treatment with mTOR inhibitors and stimulate further studies to assess whether the inability to affect GSK-3b activity may constitute a clinically relevant resistance factor to mTOR inhibitors.  相似文献   

18.
Plexins are receptors for the axonal guidance molecules known as semaphorins, and the semaphorin 4D (Sema4D) receptor plexin-B1 induces repulsive responses by functioning as an R-Ras GTPase-activating protein (GAP). Here we characterized the downstream signalling of plexin-B1-mediated R-Ras GAP activity, inducing growth cone collapse. Sema4D suppressed R-Ras activity in hippocampal neurons, in parallel with dephosphorylation of Akt and activation of glycogen synthase kinase (GSK)-3beta. Ectopic expression of the constitutively active mutant of Akt or treatment with GSK-3 inhibitors suppressed the Sema4D-induced growth cone collapse. Constitutive activation of phosphatidylinositol-3-OH kinase (PI(3)K), an upstream kinase of Akt and GSK-3beta, also blocked the growth cone collapse. The R-Ras GAP activity was necessary for plexin-B1-induced dephosphorylation of Akt and activation of GSK-3beta and was also required for phosphorylation of a downstream kinase of GSK-3beta, collapsin response mediator protein-2. Plexin-A1 also induced dephosphorylation of Akt and GSK-3beta through its R-Ras GAP activity. We conclude that plexin-B1 inactivates PI(3)K and dephosphorylates Akt and GSK-3beta through R-Ras GAP activity, inducing growth cone collapse.  相似文献   

19.
Phosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt. NF-kappa B is retained in the cytoplasm by inhibitory proteins, I kappa Bs, which are phosphorylated and targeted for degradation by I kappa B kinases (IKK alpha and IKK beta). Expression and the ratios of IKK alpha and IKK beta, which homo- and heterodimerize, varied among cell types. Cells with a high proportion of IKK alpha (the IKK kinase activated by Akt) to IKK beta were most sensitive to PI 3-kinase inhibitors. Consequently, transient expression of IKK beta diminished the capacity of the inhibitors to block NF-kappa B DNA binding in 293 cells. Also, inhibitors of PI 3-kinase blocked NF-kappa B DNA binding in Ikk beta-/- but not Ikk alpha-/- or wild-type cells in which the ratio of IKK alpha to IKK beta is low. Thus, noncoordinate expression of I kappa B kinases plays a role in determining the cell type-specific role of Akt in NF-kappa B activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号