首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characteristics of the iodide-induced inhibition of cyclic AMP accumulation in dog thyroid slices have been previously described [Van Sande, J., Cochaux, P. and Dumont, J. E. (1985) Mol. Cell. Endocrinol. 40, 181-192]. In the present study we investigated the characteristics of the iodide-induced inhibition of adenylate cyclase activity in dog and horse thyroid. The inhibition of cyclic AMP accumulation by iodide in stimulated horse thyroid slices was similar to that observed in dog thyroid slices. The inhibition was observed in slices stimulated by thyroid-stimulating hormone, cholera toxin and forskolin. Increasing the concentration of the stimulators did not overcome the iodide-induced inhibition. Adenylate cyclase activity, assayed in crude homogenates or in plasma-membrane-containing particulates (100,000 x g pellets), was lower in homogenates or in particulates prepared from iodide-treated slices than from control slices. This inhibition was observed on the cyclase activity stimulated by forskolin, fluoride or guanosine 5'-[beta, gamma-imino]triphosphate, but also on the basal activity. It was relieved when the homogenate was prepared from slices incubated with iodide and methimazole. Similar results were obtained with dog thyroid. The inhibition persisted when the particulate fraction was washed three times during 1 h at 100,000 x g, in the presence of bovine serum albumin or increasing concentration of KCl. It was similar whatever the duration of the cyclase assay, in a large range of protein concentration. These results indicate that a stable modification of adenylate cyclase activity, closely related to the plasma membrane, was induced when slices were incubated with iodide. Iodide inhibition did not modify the affinity of adenylate cyclase for its substrate (MgATP), but induced a decrease of the maximal velocity of the enzyme. The percentage inhibition was slightly decreased when Mg2+ concentration increased, and markedly decreased when Mn2+ concentration increased. A detectable adenylate cyclase activity was demonstrated when intact slices were incubated in the presence of [alpha-32P]ATP, probably because of the presence of broken cells produced during the slicing. Iodide had no direct effect on this cyclase system, which confirms that iodide needs the integrity of the cell to induce the inhibition and suggests that the inhibition is not transmitted between cells.  相似文献   

2.
Gossypol, a polyphenolic binaphthalene -dialdehyde reputed to exert contraceptive action in males, reversibly inhibits adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] in a concentration-dependent manner. In membranes prepared from a variety of organs, the half-maximal inhibitory concentration (IC50) ranges from 75 microM (rat Leydig tumor cells) to 250 microM (rat liver membranes). Kinetic studies using partially purified catalytic subunit isolated from bovine testis show that gossypol is competitive with ATP with an apparent Ki of 110 microM. These data suggest that gossypol inhibition of adenylate cyclase is due to direct interaction at the nucleotide-binding domain of the catalytic subunit of the enzyme.  相似文献   

3.
In hamster adipocyte ghosts, ACTH and β-adrenergic agonists stimulate adenylate cyclase by a GTP-dependent process; in contrast, inhibition of the enzyme by hormonal factors requires both GTP and sodium ions. The interaction of various monovalent cations and guanine nucleotides was studied on basal, stimulated and inhibited adenylate cyclase activities. In the presence of GTP (0.03–10 μM), which reduced basal activity by up to 90%, monovalent cations (10–500 mM, added as chloride salts) increased the enzyme activity by up to about 8-fold. The potency order obtained was Na+>Li+>K+>choline. The stable GTP analogue, guanylyl-5′-imidodiphosphate, which like GTP was capable of decreasing basal activity, diminished the cation-induced activation. The stimulatory effects of ACTH and isoproterenol on adipocyte adenylate cyclase activity were impaired by the cations in the potency order, Na+>Li+>K+>choline. Additionally, NaCl shifted the concentration-response for ACTH to the right and caused an increase in the maximal activation by the hormone. Similar to basal activity, fluoride-stimulated activity was increased by NaCl, when GTP was present. The inhibitory effect of prostaglandin E1 on basal adipocyte adenylate cyclase activity was revealed by the cations in the above mentioned potency order by an apparent reversal of the cation-induced activation. In the presence of NaCl, the ACTH- or fluoride-stimulated activities were also reduced by prostaglandin E1, but the inhibitory hormonal factor did not reverse the NaCl-induced shift in the concentration-response curve for ACTH. Guanylyl-5′-imidodiphosphate completely prevented hormonal inhibition. The data suggest that monovalent cations interact with the guanine nucleotide-binding regulatory component of the adipocyte adenylate cylase system and that this interaction somehow changes the properties of this component, now revealing hormone-induced inhibition partially impairing hormone-induced stimulation.  相似文献   

4.
5.
We have examined the inhibitory regulation by Ca2+ of the adenylate cyclase activity associated with microsomes isolated from bovine aorta smooth muscle. In the presence of 2 mM MgCl2, Ca2+ (0.8-100 microM) inhibited in a noncompetitive manner activation of the enzyme by GTP, Gpp[NH]p, or forskolin. In all instances the value for half-maximal inhibition was between 2 and 3 microM. In contrast, Ca2+ inhibited the activation by MgCl2 (2-50 mM), alone or in the presence of GTP, in a competitive manner. The inhibition of adenylate cyclase by 10 microM Ca2+ was reversed in the presence of either 5 or 25 microM calmodulin or troponin C. These data show that (i) Ca2+, at concentrations similar to those which activate smooth muscle contraction, inhibits the stimulation of adenylate cyclase by several activators; (ii) Ca2+ and Mg2+ compete for a common site on the smooth muscle adenylate cyclase complex; and (iii) the reversal of Ca2+-dependent inhibition by Ca2+-binding proteins may be produced by chelation of the metal by these proteins.  相似文献   

6.
Basal and dopamine-stimulated adenylate cyclase (EC 4.6.1 1.) activities were strongly inhibited by GSSG, but not by GSH. Adenylate cyclase that had been inactivated by GSSG was reactivated by incubation with various sulfhydryl compounds including GSH. Formation of mixed disulfides by reaction between GSSG and protein-SH groups increased on incubation with GSSG and returned to the normal level on subsequent incubation with DTT.  相似文献   

7.
Ni-mediated inhibition of human platelet adenylate cyclase by thrombin   总被引:10,自引:0,他引:10  
Cefoxitin, a poor substrate of the RTEM beta-lactamase (penicillin amido-beta-lactam hydrolase, EC 3.5.2.6), induces a reversible change in the conformation of the enzyme. The change is manifested in gradual loss of catalytic activity and increased susceptibility to proteolytic inactivation. It is prevented by antibodies, which stabilize the native conformation. By contrast, divalent cations, which have no effect on the native enzyme, delay recovery from the cefoxitin-induced state, presumably by reacting with sites made accessible in the partly unfolded enzyme. Prolonged exposure to excess of cefoxitin causes a similar delay. The kinetic evidence, namely, the initial burst of consumption of cefoxitin and the subsequent gradual recovery of activity with better substrates, appears to be consistent with acylation of the active site by cefoxitin followed by a slower deacylation step [Fisher et al. (1980) Biochemistry 19, 2895-2901]. However, additional evidence leads us to conclude that the kinetics observed reflect deformation of the active site, rather than its blockage, by cefoxitin. Of most significance is the transient change in specificity, i. e. a preferential interaction of the recovering enzyme with substrates which are closest in structure to cefoxitin.  相似文献   

8.
Calcium (Ca2+) ion concentrations that are achieved intracellularly upon membrane depolarization or activation of phospholipase C stimulate adenylate cyclase via calmodulin (CaM) in brain tissue. In the present study, this range of Ca2+ concentrations produced unanticipated inhibitory effects on the plasma membrane adenylate cyclase activity of GH3 cells. Ca2+ concentrations ranging from 0.1 to 0.8 microM exerted an increasing inhibition on enzyme activity, which reached a plateau (35-45% inhibition) at around 1 microM. This inhibitory effect was highly cooperative for Ca2+ ions, but was neither enhanced nor dependent upon the addition of CaM (1 microM) to EGTA-washed membranes. The inhibition was greatly enhanced upon stimulation of the enzyme by vasoactive intestinal peptide (VIP) and/or GTP. Prior exposure of cultured cells to pertussis toxin did not affect the inhibition of plasma membrane adenylate cyclase activity by Ca2+, although in these membranes, hormonal (somatostatin) inhibition was significantly attenuated. Maximally effective concentrations of Ca2+ and somatostatin produced additive inhibitory effects on adenylate cyclase. The addition of phosphodiesterase inhibitors demonstrated that inhibitory effects of Ca2+ were not mediated by Ca2(+)-dependent stimulation of a phosphodiesterase activity. These observations provide a mechanism for the feedback inhibition by elevated intracellular Ca2+ levels on cAMP-facilitated Ca2+ entry into GH3 cells, as well as inhibitory crosstalk between Ca2(+)-mobilizing signals and adenylate cyclase activity.  相似文献   

9.
Summary Cytosolic adenylate cyclase activity from rat seminiferous tubules was purified by chromatography in DEAE-cellulose, hydroxylapatite and Bio-Gel A-0.5 m as well as by centrifugation in sucrose gradients. In all these purification steps, fractions with adenylate cyclase activity also contained binding activity for L-T3. Binding studies indicate the existence of two L-T3 receptor components associated to adenylate cyclase activity. The component exhibiting the highest hormone affinity has the lowest binding capacity.  相似文献   

10.
In hamster adipocyte ghosts, ACTH stimulates adenylate cyclase by a GTP-dependent process, whereas prostaglandin E E1, α-adrenergic agonists and nicotinic acid inhibit the enzyme by a mechanism which is both GTP- and sodium-dependent. The influence of the divalent cations Mn2+ and Mg2+, was studied on these two different, apparently receptor-mediated effects on the adipocyte adenylate cyclase. At low Mn2+ concentrations, GTP (1 μM) decreased enzyme activity by about 80%. Under this condition, ACTH (0.1 μM) stimulated the cyclase by 6- to 8-fold, and NaCl (100 mM) caused a similar activation. In the presence of both GTP and NaCl, prostaglandin E1 (1 or 10 μM) and nicotinic acid (30 μM) inhibited the enzyme by about 70–80% and epinephrine (300 μM, added in combination with a β-adrenergic blocking agent) by 40–50%. With increasing concentrations of Mn2+, the GTP-induced decrease and the NaCl-induced increase in activity diminished, with a concomitant decrease in prostaglandin E1?, nicotinic acid- and epinephrine-induced inhibitions as well as in ACTH-induced stimulation. At 1 mM Mn2+, inhibition of the enzyme was almost abolished and stimulation by ACTH was largely reduced, whereas activation of the enzyme by KF (10 mM) was only partially impaired. The uncoupling action of Mn2+ on hormone-induced inhibition was half-maximal at 100–200 μM and appeared not to be due to increased formation of the enzyme substrate, Mn · ATP. It occurred without apparent lag phase and could not be overcome by increasing the concentration of GTP. Similar but not identical findings with regard to adenylate cyclase stimulation and inhibition by hormonal factors were obtained with Mg2+, although about 100-fold higher concentrations of Mg2+ than of Mn2+ were required. The data indicate that Mn2+at low concentrations functionally uncouples inhibitory and stimulatory hormone receptors from adenylate adenylate cyclase in membrane preparations of hamster adipocytes, and they suggest that the mechanism leading to uncoupling involves an action of Mn2+ on the functions of the guanine nucleotide site(s) in the system.  相似文献   

11.
Alpha-adrenergic inhibition of renal cortical adenylate cyclase   总被引:1,自引:0,他引:1  
Adenylate cyclase in homogenates of rat renal cortex was inhibited by alpha-adrenergic agonists. Inhibition required sodium ion and GTP. A maximum inhibition of 17.8 +/- 1.4% (S.E.M.) was produced by l-epinephrine in the presence of 0.2 M NaCl, 10 microM GTP and 10 microM propranolol. Similar inhibition was produced by l-norepinephrine and alpha-methylnorepinephrine. The EC50 values for l-epinephrine, l-norepinephrine and alpha-methylnorepinephrine were respectively 1.9 +/- 0.7 microM, 2.3 +/- 1.6 microM and 5.1 +/- 1.8 microM. Clonidine was a partial agonist causing 50% as much inhibition as epinephrine. Phenylephrine and methoxamine did not inhibit at concentrations up to 100 microM. Micromolar concentrations of phentolamine and yohimbine prevented the inhibition of adenylate cyclase by epinephrine. However, prazosin was ineffective. Thus the adenylate cyclase coupled alpha-receptors have alpha-2 specificity. Inhibition of adenylate cyclase by alpha-adrenergic agonists was not observed in homogenates of renal medulla.  相似文献   

12.
13.
Plasma membranes have been purified from porcine thyroid gland homogenate by discontinuous sucrose gradient centrifugation. The preparations contained specific binding sites for thyrotropin but not for luteinizing hormone or the beta subunits of thyrotropin and luteinizing hormone. Optimum conditions of 125I-labeled thyrotropin binding were pH 6.0-6.5 and 37 degrees C. Thyrotropin binding was reduced by divalent (Ca2+, Mg2+) and monovalent cations (Na+, K+, Li+), 50% inhibition being obtained at 10 mM and 50 mM respectively. Displacement curves of 125I-labeled bovine or porcine thyrotropin by the unlabeled hormone from three species was in the order of increasing concentrations (bovine greater than porcine greater than human) which is the order of decreasing biological activity of these hormone preparations in the assay in vivo in the mouse. The validity of the results was established by controlling that porcine membranes bound the native and the 125I-labeled hormones with equal affinity. A single type of high-affinity (Kd = 0.28 nM) binding sites was detected for bovine and porcine thyrotropins. In contrast, porcine plasma membranes bound human thyrotropin with a lower affinity (Kd = 70 nM). A good correlation was found at equilibrium and in the conditions of the cyclase assay, between receptor occupancy and adenylate cyclase activation for the three hormones.  相似文献   

14.
1. Undernutrition is an insult that affects brain development and functioning. Considering that signaling through metabotropic receptors/G proteins is critical for normal synaptic transmission and contributes to CNS development and synaptic plasticity, the present study investigated the effects of pre- and postnatal protein deprivation (diet: 8% protein; normonourished group: 25% protein) on brain signal transduction by G proteins.2. Undernutrition decreased the [3H] GMP-PNP binding to G proteins and AC activity, in neural plasma synaptic membranes of 21- and 75-day-old rats. This effect was less pronounced or even absent in old rats.3. Ontogenetically, the dietary treatment effect might be interpreted as a retarded development associated with protein malnutrition.  相似文献   

15.
The effects of adenylate cyclase inhibition on the transport of glucose and fructose and their incorporation into glycogen were investigated in order to assess the extent to which lowered cAMP levels can take part in the various components of glycogen synthesis regulation in isolated rat epididymal adipocytes. The dose-response characteristics of (R)-N-(2-phenylisopropyl)adenosine (PIA), a potent and specific adenylate cyclase inhibitor, on glycogen synthesis were compared with those effectively inhibiting lipolysis, a measure of functional cAMP levels. PIA had no effect on basal glucose or fructose transport but stimulated glucose and fructose incorporation into glycogen. Their respective incorporation was 10 and 69% of that achieved in the presence of insulin. These effects of PIA were shown to be in part the result of increased glycogen synthase I activity. PIA was 20% as effective as insulin in this action. Thus, were insulin to lower cAMP levels and/or inhibit cAMP-dependent protein kinase, this action would be irrelevant to glucose transport but would contribute to the stimulation of glycogen metabolism. However, an additional mechanism(s) involving neither increased glucose transport nor lowered cAMP levels is required to account for the full action of insulin. Fat cells in the absence of medium glucose and in the presence of 10(-7) M PIA and adenosine deaminase constitute a system functionally depleted of cAMP where this mechanism can be studied in isolation.  相似文献   

16.
The effects of magnesium and sodium ions on adenylate cyclase activity in plasma membranes from chicken heart and eggshell gland mucosa were studied. It was found that the increase in magnesium chloride concentration from 5 to 40 mM results in the stimulation (4.1-fold) of the adenylate cyclase activity. The increase in sodium chloride concentration up to 150 mM stimulated the enzyme activity 2-fold. The stimulation of adenylate cyclase by magnesium and sodium ions was less pronounced in the eggshell gland. GTP did not activate adenylate cyclase. The activating effect of magnesium and sodium ions was accompanied by the attenuation of the enzyme sensitivity to NaF, guanylyl imidodiphosphate and isoproterenol. Activation by guanylyl imidodiphosphate was completely abolished in the presence of 40 mM magnesium chloride. It is assumed that high concentrations of the salt promote subunit dissociation of the adenylate cyclase regulatory protein and its interaction with the catalytic subunit in the presence of endogenous nucleotides. The differences in the adenylate cyclase sensitivity to cations in chicken heart and eggshell gland mucosa correlate with the amount of pertussis toxin substrate.  相似文献   

17.
Calmodulin regulation of adenylate cyclase activity   总被引:8,自引:0,他引:8  
Calmodulin-dependent stimulation of adenylate cyclase was initially thought to be a unique feature of neural tissues. In recent years evidence to the contrary has accumulated, calmodulin-dependent stimulation of adenylate cyclase now being demonstrated in a wide range of structurally unrelated tissues and species. Demonstration of the existence of calmodulin-dependent adenylate cyclase has in nearly all instances required the removal of endogenous calmodulin. It is not yet clear whether calmodulin-dependent and calmodulin-independent forms of the enzyme exist and whether some tissues (such as heart) lack a calmodulin-dependent adenylate cyclase. The presence of calmodulin appears largely responsible for the ability of the adenylate cyclase enzyme to be stimulated by submicromolar concentrations of calcium; it may not be relevant to the inhibition of the enzyme which occurs at higher concentrations of calcium. The physical relationship of calmodulin to the plasma membrane bound enzyme (or to the soluble forms of the enzyme) is not known nor is the mechanism of adenylate cyclase activation by calmodulin clear; current data suggest some involvement with both the N and C units of the enzyme. Finally, it is possible that in vivo calcium contributes to the duration of the hormone stimulated cyclic AMP signal. Thus current in vitro data suggest that optimal hormonal activation of calmodulin-dependent adenylate cyclase occurs at very low intracellular calcium concentrations, comparable to those found in the resting cell; conversely the enzyme is inhibited as intracellular calcium increases, following for example agonist stimulation of the cell. These higher calcium concentrations would then activate calmodulin-dependent phosphodiesterase. Such differential effects of calcium on adenylate cyclase and phosphodiesterase would ultimately restrict the duration of the hormone-induced cyclic AMP signal.  相似文献   

18.
Heparin inhibits (I50 = 2 μg/ml) the activity of luteinizing hormone and human chorionic gonadotropin-stimulated adenylate cyclase in purified rat ovarian plasma membranes. Unstimulated enzyme activity and activity stimulated by NaF, GTP or guanosine 5′-(β,γ-imido)triphosphate were inhibited to a lesser extent. Human chorionic gonadotropin binding to this membrane preparation was inhibited by hepatin (I50 = 6 μg/ml). The inhibition with respect to hormone concentration was of a mixed type for hormone binding and adenylate cyclase stimulation. Inhibition by heparin was not eliminated at saturating hormone concentration. The degree of inhibition was unaffected by the order in which enzyme, hormone and heparin were introduced into the assay system. Herapin (3 μg/ml) did not affect the pH activity relationship of basal and hormone-stimulated adenylate cyclase activity and did not change the dependence of enzyme activity on magnesium ion concentration. The inhibitory action of heparin cannot be solely attributed to interference with either catalysis or hormone binding. The possibility is considered that the highly charged herapin molecule interferes with enzyme receptor coupling, by restricting the mobility of these components or by effecting their conformation.  相似文献   

19.
Human platelet adenylate cyclase is stimulated by prostaglandin E1 (PGE1) and is inhibited by epinephrine via alpha-adrenoceptors. Both agonists, epinephrine more than PGE1, increase the activity of a low Km GTPase in platelet membranes. Pretreatment of intact platelets or platelet membranes with the sulfhydryl reagent, N-ethylmaleimide (NEM), abolished the inhibition of the adenylate cyclase and the concomitant stimulation of the GTPase by epinephrine. In contrast, stimulation of the adenylate cyclase by PGE1 was not affected or even increased by NEM pretreatment; only at high NEM concentrations were both basal and PGE1-stimulated activities decreased. Similarly, the PGE1-induced activation of the low Km GTPase was not or was only partially reduced by NEM. Adenylate cyclase activation by stable GTP analogs, NaF, and cholera toxin was also not decreased by NEM pretreatment. Exposure of intact platelets to NEM did not reduce alpha-adrenoceptor number and affinities for agonists and antagonists, as determined by [3H]yohimbine binding in platelet particles. The data indicate that NEM uncouples alpha-adrenoceptor-mediated inhibition of platelet adenylate cyclase, leaving the receptor recognition site and the adenylate cyclase itself relatively intact. Although the effect of NEM may be based on a reaction with the alpha-adrenoceptor site interacting with a coupling component, the selective loss of the adenylate cyclase inhibition together with an even increased stimulation of the enzyme by PGE1 suggests that there are two at least partially distinct regulatory sites involved in opposing hormonal regulations of adenylate cyclase activity, with that involved in hormonal inhibition being highly susceptible to inactivation by NEM.  相似文献   

20.
Abstract Intracellular and extracellular cyclic adenosine 3',5'-monophosphate (cAMP) levels were determined during the growth of Streptomyces granaticolor . The intracellular level of cAMP represents not more than 10% of the total amount. cAMP synthesis varies in cultures growing on different carbon sources. The activity of adenylate cyclase in intact cells is strictly dependent on the presence of a metabolizable carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号