首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Khayat R  Batra R  Massariol MJ  Lagacé L  Tong L 《Biochemistry》2001,40(21):6344-6351
Herpesvirus proteases belong to a new class of serine proteases and contain a novel Ser-His-His catalytic triad, while classical serine proteases have an acidic residue as the third member. To gain a better understanding of the molecular basis for the functional role of the third-member His residue, we have carried out structural and biochemical investigations of human cytomegalovirus (HCMV) protease that bears mutations of the His157 third member. Kinetic studies showed that all the mutants have reduced catalytic activity. Structural studies revealed that a solvent molecule is hydrogen-bonded to the His63 second member and Ser134 in the H157A mutant, partly rescuing the activity of this mutant. This is confirmed by our kinetic and structural observations on the S134A/H157A double mutant, which showed further reductions in the catalytic activity. The structure of the H157A mutant is also in complex with the PMSF inhibitor. The H157E mutant has the best catalytic activity among the mutants; its structure, however, showed conformational readjustments of the His63 and Ser132 residues. The Ser132-His63 diad of HCMV protease has similar activity as the diads in classical serine proteases, whereas the contribution of the His157 third member to the catalysis is much smaller. Finally, structural comparisons revealed the presence of two conserved structural water molecules at the bottom of the S(1) pocket, suggesting a possible new direction for the design of HCMV protease inhibitors.  相似文献   

2.
M Hassan  M Goodman 《Biochemistry》1986,25(23):7596-7606
Molecular dynamics simulations and energy minimization studies of cyclic enkephalin analogues incorporating retro-inverso modifications have been carried out. The dynamic trajectories are analyzed in terms of the relative mobility of the 14-membered rings, conformational transitions among equilibrium states, and hydrogen-bonding patterns. The cyclization of the molecules reduces the motion of the ring structures substantially. Time-correlated conformational transitions resulting in the reorientation of peptide units are observed. Hydrogen bonds form principally C7 structures. Because of the incorporation of retro-inverso residues, C6 and C8 structures are also formed. Starting conformations for energy minimizations were obtained from the molecular dynamics simulations and from a systematic search of the conformational space available to the molecules. Several minimum energy backbone and side-chain conformations were found for each analogue. The effect of retro-inverso residues on hydrogen-bonding patterns and backbone conformations is discussed.  相似文献   

3.
The alpha/beta hydrolase fold.   总被引:21,自引:0,他引:21  
We have identified a new protein fold--the alpha/beta hydrolase fold--that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta sheet, not barrel, of eight beta-sheets connected by alpha-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the alpha/beta hydrolase fold enzymes.  相似文献   

4.
Molecular dynamics simulations have been used to search for the accessible conformations of the melanin-concentrating hormone (MCH). The studies have been performed on native MCH and two of its peptide fragments, a cyclic MCH(5-14) fragment and a linear MCH(5-14) fragment. An analysis of the molecular dynamics trajectories of the three peptides indicates that two regions of the peptide have characteristic conformational properties that may be important for the biological activity. One is a region around Gly8, which is conformationally mobile, and the other is around Pro13, which shows unusual rigidity. The molecular dynamics simulation results are discussed in terms of backbone structural features like beta turns, side-chain interactions, and orientations of the disulfide bridge. The results of this analysis are used to suggest new analogues that will modify the conformational features of the peptide and further define the conformational requirements for activity. Finally, the results are related to nmr studies of the peptide and reveal agreements between the experimental nuclear Overhauser effect constraints and some of the accessible conformations obtained from the simulation.  相似文献   

5.
Lc-WT, the wild-type light chain of antibody, and Lc-Triad, its double mutant with E1D and T27aS designing for the construction of catalytic triad within Asp1, Ser27a, and original His93 residues, were displayed on the cell surface of the protease-deficient yeast strain BJ2168. When each cell suspension was reacted with BODIPY FL casein and seven kinds of peptide-MCA substrates, respectively, a remarkable difference in hydrolytic activities toward Suc-GPLGP-MCA (succinyl-Gly-Pro-Leu-Gly-Pro-MCA), a substrate toward collagenase-like peptidase, was observed between the constructs: Lc-Triad-displaying cells showed higher catalytic activity than Lc-WT-displaying cells. The difference disappeared in the presence of the serine protease inhibitor diisopropylfluorophosphate, suggesting that the three amino acid residues, Ser27a, His93, and Asp1, functioned as a catalytic triad responsible for the proteolytic activity in a similar way to the anti-vasoactive intestinal peptide (VIP) antibody light chain. A serine protease-like catalytic triad (Ser, His, and Asp) is considered to be directly involved in the catalytic mechanism of the anti-VIP antibody light chain, which moderately catalyzes the hydrolysis of VIP. These results suggest the possibility of new approach for the creation of tailor-made proteases beyond limitations of the traditional immunization approach.  相似文献   

6.
Quantum chemical and molecular dynamics investigations have been performed on model systems for Candida rugosa lipase (CRL) to study mechanistic and conformational features of the catalytic hydrolysis. Based on X-ray data, a simplified model of the CRL substrate complex was created for the PM3 and ab initio calculations, including the amino acid residues both of the catalytic triad and the oxyanion hole.The energetic and structural properties of significant species along the pathway of the hydrolysis of the model substrate acetic acid methyl ester have been calculated. By modifications of the residues of the oxyanion hole as well as the catalytic triad, the influence of these parts of the active site on the pathway of the reaction was analysed in more detail.Moreover, molecular dynamics simulations have been carried out on CRL adducts with (±)-cis-4-acetamido-cyclopent-2-ene-1-carboxylic esters with different lengths of their alkyl chain and their absolute configuration as substrates. For the MD simulations using the AMBER program, all amino acid residues and water molecules with a cut-off radius less than 1500 pm from the substrate were taken into account. From the analysis of the trajectories and histograms for significant hydrogen bonds in the active site of the enzyme adducts, some hints were obtained for the enantiodifferentiation and the chain dependence of the esters in catalytic hydrolysis by CRL.Electronic Supplementary Material available.  相似文献   

7.
The Asp-His-Ser triad of serine proteases has been regarded, in the present study, as an independent catalytic motif, because in nature it has been incorporated at the active sites of enzymes as diverse as the serine proteases and the lipases. Incorporating this motif into non-protease scaffolds, by rational design and mutagenesis, might lead to the generation of novel catalysts. As an aid to such experiments, a knowledge-based computer modeling procedure has been developed to model the protease Asp-His-Ser triad into non-proteases. Catalytic triads from a set of trypsin family proteases have been analyzed and criteria that characterize the geometry of the triads have been obtained. Using these criteria, the modeling procedure first identifies sites in non-proteases that are suitable for modeling the protease triad. H-bonded Asp-His-Ser triads, that mimic the protease catalytic triad in geometry, are then modeled in at these sites, provided it is stereochemically possible to do so. Thus non-protease sites at which H-bonded Asp-His-Ser triads are successfully modeled in may be considered for mutagenesis experiments that aim at introducing the protease triad into non-proteases. The triad modeling procedure has been used to identify sites for introducing the protease triad in three binding proteins and an immunoglobulin. A scoring function, depending on inter-residue distances, solvent accessibility and the substitution potential of amino acid residues at the modeling sites in the host proteins, has been used to assess the quality of the model triads.  相似文献   

8.
As part of an effort to develop new, low molecular mass peptide antibiotics, we searched for the shortest bioactive analogue of gaegurin 5 (GGN5), a 24-residue antimicrobial peptide. Thirty-one kinds of GGN5 analogues were synthesized, and their biological activities were analyzed against diverse microorganisms and human erythrocytes. The structural properties of the peptides in various solutions were characterized by spectroscopic methods. The N-terminal 13 residues of GGN5 were identified as the minimal requirement for biological activity. The helical stability, the amphipathic property, and the hydrophobic N terminus were characterized as the important structural factors driving the activity. To develop shorter antibiotic peptides, amino acid substitutions in an inactive 11-residue analogue were examined. Single tryptophanyl substitutions at certain positions yielded some active 11-residue analogues. The most effective site for the substitution was the hydrophobic-hydrophilic interface in the amphipathic helical structure. At this position, tryptophan was the most useful amino acid conferring favorable activity to the peptide. The introduced tryptophan played an important anchoring role for the membrane interaction of the peptides. Finally, two 11-residue analogues of GGN5, which exhibited strong bactericidal activity with little hemolytic activity, were obtained as property-optimized candidates for new peptide antibiotic development. Altogether, the present approach not only characterized some important factors for the antimicrobial activity but also provided useful information about peptide engineering to search for potent lead molecules for new peptide antibiotic development.  相似文献   

9.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

10.
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic and poorly pathogenic strains of the virus were constructed by homology modeling using the crystal structure of West Nile virus NS2B-NS3 protease as a template; 20?ns molecular dynamic simulations were performed for both models, the trajectories of the dynamic simulations were compared, and the averaged distance between the two models was calculated for each residue. Conformational differences between two models were revealed in the identified pocket. The different conformations of the pocket resulted in different orientations of the NS2B segment located near the catalytic triad. In the model of the highly pathogenic TBE virus the identified pocket had a more open conformation compared to the poorly pathogenic model. We propose that conformational changes in the active protease center, caused by two amino acid substitutions, can influence enzyme functioning and the virulence of the virus.  相似文献   

11.
Escherichia coli outer membrane phospholipase A (OMPLA) is an integral membrane enzyme. OMPLA is active as a homodimer and requires calcium as a cofactor. The crystal structures of the monomeric and the inhibited dimeric enzymes were recently determined [Snijder, H. J., et al. (1999) Nature 401, 717-721] and revealed that OMPLA monomers are folded into a 12-stranded antiparallel beta-barrel. The active site consists of previously identified essential residues Ser144 and His142 in an arrangement resembling the corresponding residues of a serine hydrolase catalytic triad. However, instead of an Asp or Glu that normally is present in the triad of serine hydrolases, a neutral asparagine (Asn156) was found in OMPLA. In this paper, the importance of the catalytic Asn156 is addressed by site-directed mutagenesis studies. All variants were purified at a 30 mg scale, and were shown to be properly folded using SDS-PAGE and circular dichroism spectroscopy. Using chemical cross-linking, it was shown that all variants were not affected in their calcium-dependent dimerization properties. The Asn156Asp variant exhibited a 2-fold lower activity than wild-type OMPLA at neutral pH. Interestingly, the activity of the variant is 1 order of magnitude higher than that of the wild type at pH >10. Modest residual activities (5 and 2.5%, respectively) were obtained for the Asn156Ala and Asn156Gln mutants, showing that the active site of OMPLA is more tolerant toward replacements of this third residue of the catalytic triad than other serine hydrolases, and that the serine and histidine residues are minimally required for catalysis. In the X-ray structure of dimeric OMPLA, the cofactor calcium is coordinating the putative oxyanion via two water molecules. We propose that this may lessen the importance for the asparagine in the catalytic triad of OMPLA.  相似文献   

12.
We have purified a 30-kDa serine protease (designated RNK-Met-1) from the granules of the rat large granular lymphocyte leukemia cell line (RNK-16) that hydrolytically cleaves model peptide substrates after methionine, leucine, and norleucine (Met-ase activity). Utilizing molecular sieve chromatography, heparin-agarose, chromatography, and reverse-phase high pressure liquid chromatography, RNK-Met-1 was purified to homogeneity and 25 NH2-terminal amino acids were sequenced. By using the polymerase chain reaction, oligonucleotide primers derived from amino acids at position 14-25 and from a downstream active site conserved in other serine protease genes were used to generate a 534-base pair cDNA clone encoding a novel serine protease from RNK-16 mRNA. This cDNA clone was used to isolate a full-length 867-base pair RNK-Met-1 cDNA from an RNK-16 lambda-gt11 library. The open reading frame predicts a mature protein of 238 amino acids with two potential sites for N-linked glycosylation. The cDNA also encodes a leader peptide of at least 20 amino acids. The characteristic Ile-Ile-Gly-Gly amino acids of the NH2 terminus and the His, Asp, and Ser residues that form the catalytic triad of serine proteases were both conserved. The amino acid sequence has less than 45% identity with any other member of the serine protease family, indicating that RNK-Met-1 is distinct and may itself represent a new subfamily of serine proteases. Northern blot analysis of total cellular RNA detected a single 0.9-kilobase mRNA in the in vitro and in vivo variants of RNK-16 and in spleen-derived plastic-adherent rat lymphokine-activated killer cells. RNK-Met-1 mRNA was not detectable in freshly isolated rat splenocytes, thymocytes, brain, colon, and liver or activated nonadherent rat splenocytes and thymocytes. These data indicate that RNK-Met-1 is a serine protease with unique activity that is expressed in the granules of large granular lymphocytes.  相似文献   

13.
14.
The activity of the avian myeloblastosis virus (AMV) or the human immunodeficiency virus type 1 (HIV-1) protease on peptide substrates which represent cleavage sites found in the gag and gag-pol polyproteins of Rous sarcoma virus (RSV) and HIV-1 has been analyzed. Each protease efficiently processed cleavage site substrates found in their cognate polyprotein precursors. Additionally, in some instances heterologous activity was detected. The catalytic efficiency of the RSV protease on cognate substrates varied by as much as 30-fold. The least efficiently processed substrate, p2-p10, represents the cleavage site between the RSV p2 and p10 proteins. This peptide was inhibitory to the AMV as well as the HIV-1 and HIV-2 protease cleavage of other substrate peptides with Ki values in the 5-20 microM range. Molecular modeling of the RSV protease with the p2-p10 peptide docked in the substrate binding pocket and analysis of a series of single-amino acid-substituted p2-p10 peptide analogues suggested that this peptide is inhibitory because of the potential of a serine residue in the P1' position to interact with one of the catalytic aspartic acid residues. To open the binding pocket and allow rotational freedom for the serine in P1', there is a further requirement for either a glycine or a polar residue in P2' and/or a large amino acid residue in P3'. The amino acid residues in P1-P4 provide interactions for tight binding of the peptide in the substrate binding pocket.  相似文献   

15.
The epidermolytic toxins are serine proteases   总被引:9,自引:0,他引:9  
Certain strains of Staphylococcus aureus usually belonging to phage group II produce epidermolytic toxins (ETA and ETB) which cause intraepidermal splitting in mice, neonates and occasionally adults. Amino acid sequences of ETA and ETB have been reported but the mechanism of epidermolysis remains unknown. A search of the NBRF-PIR computer database showed the toxins to have significant sequence similarity with staphylococcal V8 protease and that the catalytic triad of V8 protease is present in ETA and ETB. Comparison of ETA, ETB and V8 protease with other members of the trypsin-like serine protease family revealed little homology save for the immediate vicinity of the residues constituting the catalytic triad. The toxins, therefore, exhibit a distant relationship to mammalian serine proteases. A potential Ca2(+)-binding loop was identified in ETA (but not ETB) on the basis of sequence similarity with the second calcium-binding loop of rat intestinal calcium-binding protein. Epidermolysis produced by ETA in the mouse bioassay was shown to be inhibited by the presence of EDTA consistent with a Ca2(+)-dependent mechanism.  相似文献   

16.
Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, gamma-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins.  相似文献   

17.
EPg222 protease is a novel extracellular enzyme produced by Penicillium chrysogenum (Pg222) isolated from dry-cured hams that has the potential for use over a broad range of applications in industries that produce dry-cured meat products. The gene encoding EPg222 protease has been identified. Peptide sequences of EPg222 were obtained by de novo sequencing of tryptic peptides using mass spectrometry. The corresponding gene was amplified by PCR using degenerated primers based on a combination of conserved serine protease-encoding sequences and reverse translation of the peptide sequences. EPg222 is encoded as a gene of 1,361 bp interrupted by two introns. The deduced amino acid sequence indicated that the enzyme is synthesized as a preproenzyme with a putative signal sequence of 19 amino acids (aa), a prosequence of 96 aa and a mature protein of 283 aa. A cDNA encoding EPg222 has been cloned and expressed as a functionally active enzyme in Pichia pastoris. The recombinant enzyme exhibits similar activities to the native enzyme against a wide range of protein substrates including muscle myofibrillar protein. The mature sequence contains conserved aa residues characteristic of those forming the catalytic triad of serine proteases (Asp42, His76 and Ser228) but notably the food enzyme exhibits specific aa substitutions in the immunoglobulin-E recognition regions that have been identified in protein homologues that are allergenic.  相似文献   

18.
Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.  相似文献   

19.
Although protein Z (PZ) has a domain arrangement similar to the essential coagulation proteins FVII, FIX, FX, and protein C, its serine protease (SP)-like domain is incomplete and does not exhibit proteolytic activity. We have generated a trial sequence of putative activated protein Z (PZa) by identifying amino acid mutations in the SP-like domain that might reasonably resurrect the serine protease catalytic activity of PZ. The structure of the activated form was then modeled based on the proposed sequence using homology modeling and solvent-equilibrated molecular dynamics simulations. In silico docking of inhibitors of FVIIa and FXa to the putative active site of equilibrated PZa, along with structural comparison with its homologous proteins, suggest that the designed PZa can possibly act as a serine protease.  相似文献   

20.
C-terminal analogues of neuropeptide Y (NPY) of small molecular size have been synthesized. The influence of chain length, single or multiple amino acid substitution, and segment substitutions on receptor binding, pre- and postsynaptic biological activity, and conformational properties have been investigated. Receptor binding and in vivo assays revealed biological activity for NPY Ac-25-36 that increased with increasing alpha-helicity. In attempts to stabilize the alpha-helical content, three independent types of modified NPY Ac-25-36 analogues were synthesized. Strong agonistic activities could be detected in a series of discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was NPY 1-4-Aca-25-36 (Aca, epsilon-aminocaproic acid). For the first time conformational properties of a series of small NPY analogues have been investigated by CD, and correlated with biological activity and receptor binding. A C-terminal dodecapeptide segment of NPY with an amount of 50% substitution to the native C-terminal sequence of NPY was found to exhibit significant receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号