首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Periodicities of ventilation are common in elderly subjects during stage 1/2 sleep. The mechanism producing these periodicities is unknown. We hypothesized that the oscillations in ventilation might be related to oscillations in sleep state. To address this hypothesis, we examined, using cross correlation, the relationship between the oscillations in ventilation and parameters (alpha power, mean frequency) derived from spectral analysis of the electroencephalogram. In wakefulness, although ventilation and mean frequency, and ventilation and alpha power, were related, there were no consistent patterns to these relationships. Both positive and negative correlations were found. Clearer relationships were found in stage 1/2 sleep. Correlation between mean frequency and ventilation was the most consistent. All correlations were positive; i.e., ventilation fell as mean frequency fell. The maximum correlation occurred at zero lag between the time series. Thus these oscillations are synchronous within the time resolution of our methodology. These data are compatible with the hypothesis that the initiation of apnea in stage 1/2 sleep is related to a reduction in the state-dependent input to the ventilatory control system.  相似文献   

2.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

3.
In our previous study of 14 premature infants, apnea occurred at the minimum phase of ventilatory oscillations. The apneas corresponded to cessation of airflow at the nose and mouth and were not distinguished as central, mixed, or obstructive. Changes in heart rate associated with the apneas were not identified. To determine whether ventilatory pattern characteristics might predict either the type of apnea or heart rate changes during the apnea, we analyzed measurements of chest wall movement and heart rate that were made during the earlier studies. Chest wall movement measured by magnetometers was compared with airflow measured with a face mask and pneumotachograph. Tidal volume, breath duration, and ventilation were calculated on a breath-by-breath basis, converted to time-axis data strings, and filtered with a comb of zero phase shift digital band-pass filters to detect breathing patterns. Of 182 apneas greater than or equal to 3 s duration, 55% were central, 31% were mixed, and 14% were obstructive. All three types of apnea were related to ventilatory oscillations. Multiple linear and logistic regressions showed that an apnea was more likely to be obstructive when it was long and when the underlying ventilatory oscillation was due primarily to an oscillation in breath duration. Multiple linear and logistic regressions showed that decreases in heart rate were related primarily to the duration of apnea and secondarily to the characteristics of the underlying breathing patterns.  相似文献   

4.
We wished to determine the severity of posthypoxic ventilatory decline in patients with sleep apnea relative to normal subjects during sleep. We studied 11 men with sleep apnea/hypopnea syndrome and 11 normal men during non-rapid eye movement sleep. We measured EEG, electrooculogram, arterial O(2) saturation, and end-tidal P(CO2). To maintain upper airway patency in patients with sleep apnea, nasal continuous positive pressure was applied at a level sufficient to eliminate apneas and hypopneas. We compared the prehypoxic control (C) with posthypoxic recovery breaths. Nadir minute ventilation in normal subjects was 6.3 +/- 0.5 l/min (83.8 +/- 5.7% of room air control) vs. 6.7 +/- 0.9 l/min, 69.1 +/- 8.5% of room air control in obstructive sleep apnea (OSA) patients; nadir minute ventilation (% of control) was lower in patients with OSA relative to normal subjects (P < 0.05). Nadir tidal volume was 0.55 +/- 0.05 liter (80.0 +/- 6.6% of room air control) in OSA patients vs. 0.42 +/- 0.03 liter, 86.5 +/- 5.2% of room air control in normal subjects. In addition, prolongation of expiratory time (Te) occurred in the recovery period. There was a significant difference in Te prolongation between normal subjects (2.61 +/- 0.3 s, 120 +/- 11.2% of C) and OSA patients (5.6 +/- 1.5 s, 292 +/- 127.6% of C) (P < 0.006). In conclusion, 1) posthypoxic ventilatory decline occurred after termination of hypocapnic hypoxia in normal subjects and patients with sleep apnea and manifested as decreased tidal volume and prolongation of Te; and 2) posthypoxic ventilatory prolongation of Te was more pronounced in patients with sleep apnea relative to normal subjects.  相似文献   

5.
Since elderly subjects have lower chemosensitivity, we postulated that ventilation might be more state dependent in the elderly. To address this we investigated the changes in ventilation, measured by respiratory inductive plethysmography, with sleep in 12 healthy young (19-29 yr) and 13 elderly (greater than 65 yr) subjects. Ventilation was measured in representative periods in each sleep state. These data showed that there is no difference between the elderly and the young either in mean ventilation or in the variability of ventilation awake or in the different states of sleep. In both groups ventilation was variable in stage 1-2 sleep and least variable in stage 3-4 sleep. The variability in stage 1-2 sleep was due to periodic breathing (cycle time approximately 45 s) in both age groups. Although within a sleep state no differences were observed, over the night of study the elderly behaved differently from the young. Apneas occurred more frequently in the elderly, and 5 of 13 elderly met the criteria for sleep apnea syndrome compared with 1 of 12 young subjects. Apneas tended to occur predominantly in stage 1-2 sleep and seem to be an exaggeration of the periodicity that is typical of this state. Four of the elderly with apnea remained in this stage of sleep throughout the night of study. The apneic episodes usually terminated with an electroencephalogram arousal that occurred prior to or simultaneously with the onset of ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Respiratory long-term facilitation (LTF) is a long-lasting (>1 h) augmentation of respiratory motor output that occurs even after cessation of hypoxic stimuli, is serotonin-dependent, and is thought to prevent sleep-disordered breathing such as sleep apnea. Raphe nuclei, which modulate several physiological functions through serotonin, receive dense projections from orexin-containing neurons in the hypothalamus. We examined possible contributions of orexin to ventilatory LTF by measuring respiration in freely moving prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates before, during, and after exposure to intermittent hypoxia (IH; 5 x 5 min at 10% O2), sustained hypoxia (SH; 25 min at 10% O2), or sham stimulation. Respiratory data during quiet wakefulness (QW), slow wave sleep (SWS), and rapid-eye-movement sleep were separately calculated. Baseline ventilation before hypoxic stimulation and acute responses during stimulation did not differ between the ORX-KO and WT mice, although ventilation depended on vigilance state. Whereas the WT showed augmented minute ventilation (by 20.0 +/- 4.5% during QW and 26.5 +/- 5.3% during SWS; n = 8) for 2 h following IH, ORX-KO showed no significant increase (by -3.1 +/- 4.6% during QW and 0.3 +/- 5.2% during SWS; n = 8). Both genotypes showed no LTF after SH or sham stimulation. Sleep apnea indexes did not change following IH, even when LTF appeared in the WT mice. We conclude that LTF occurs during both sleep and wake periods, that orexin is necessary for eliciting LTF, and that LTF cannot prevent sleep apnea, at least in mice.  相似文献   

7.
Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Expiratory muscle activity has been shown to occur in awake humans during lung inflation; however, whether this activity is dependent on consciousness is unclear. Therefore we measured abdominal muscle electromyograms (intramuscular electrodes) in 13 subjects studied in the supine position during wakefulness and non-rapid-eye-movement sleep. Lung inflation was produced by nasal continuous positive airway pressure (CPAP). CPAP at 10-15 cmH2O produced phasic expiratory activity in two subjects during wakefulness but produced no activity in any subject during sleep. During sleep, CPAP to 15 cmH2O increased lung volume by 1,260 +/- 215 (SE) ml, but there was no change in minute ventilation. The ventilatory threshold at which phasic abdominal muscle activity was first recorded during hypercapnia was 10.3 +/- 1.1 l/min while awake and 13.8 +/- 1 l/min while asleep (P less than 0.05). Higher lung volumes reduced the threshold for abdominal muscle recruitment during hypercapnia. We conclude that lung inflation alone over the range that we studied does not alter ventilation or produce recruitment of the abdominal muscles in sleeping humans. The internal oblique and transversus abdominis are activated at a lower ventilatory threshold during hypercapnia, and this activation is influenced by state and lung volume.  相似文献   

9.
To determine the effects of the sleep-induced increases in upper airway resistance on ventilatory output, we studied five subjects who were habitual snorers but otherwise normal while awake (AW) and during non-rapid-eye-movement (NREM) sleep under the following conditions: 1) stage 2, low-resistance sleep (LRS); 2) stage 3-4, high-resistance sleep (HRS) (snoring); 3) with continuous positive airway pressure (CPAP); 4) CPAP + end-tidal CO2 partial pressure (PETCO2) mode isocapnic to LRS; and 5) CPAP + PETCO2 isocapnic to HRS. We measured ventilatory output via pneumotachograph in the nasal mask, PETCO2, esophageal pressure, inspiratory and expiratory resistance (RL,I and RL,E). Changes in PETCO2 were confirmed with PCO2 measurements in arterialized venous blood in all conditions in one subject. During wakefulness, pulmonary resistance (RL) remained constant throughout inspiration, whereas in stage 2 and especially in stage 3-4 NREM sleep, RL rose markedly throughout inspiration. Expired minute ventilation (VE) decreased by 12% in HRS, and PETCO2 increased in LRS (3.3 Torr) and HRS (4.9 Torr). CPAP decreased RL,I to AW levels and increased end-expiratory lung volume 0.25-0.93 liter. Tidal volume (VT) and mean inspiratory flow rate (VT/TI) increased significantly with CPAP. Inspiratory time (TI) shortened, and PETCO2 decreased 3.6 Torr but remained 1.3 Torr above AW. During CPAP (RL,I equal to AW), with PETCO2 returned to the level of LRS, VT/TI and VE were 83 and 52% higher than during LRS alone. Also on CPAP, with PETCO2 made equal to HRS, VT, VT/TI, and VE were 67, 112, and 67% higher than during HRS alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

11.
We investigated the effect of acute and sustained inspiratory resistive loading (IRL) on the activity of expiratory abdominal muscles (EMGab) and the diaphragm (EMGdi) and on ventilation during wakefulness and non-rapid-eye-movement (NREM) sleep in healthy subjects. EMGdi and EMGab were measured with esophageal and transcutaneous electrodes, respectively. During wakefulness, EMGdi increased in response to acute loading (18 cmH2O.l-1.s) (+23%); this was accompanied by preservation of tidal volume (VT) and minute ventilation (VE). During NREM sleep, no augmentation was noted in EMGdi or EMGab. Inspiratory time (TI) was prolonged (+5%), but this was not sufficient to prevent a decrease in both VT and VE (-21 and -20%, respectively). During sustained loading (12 cmH2O.l-1 s) in NREM sleep, control breaths (C) were compared with the steady-state loaded breaths (SS) defined by breaths 41-50. Steady-state IRL was associated with augmentation of EMGdi (12%) and EMGab (50%). VT returned to control levels, expiratory time shortened, and breathing frequency increased. The net result was the increase in VE above control levels (+5%, P less than 0.01). No change was noted in end-tidal CO2 or O2. We concluded that 1) wakefulness is a prerequisite for immediate load compensation (in its absence, TI prolongation is the only compensatory response) and 2) during sustained IRL, the augmentation of EMGdi and EMGab can lead to complete ventilatory recovery without measurable changes in chemical stimuli.  相似文献   

12.
Sleep-induced periodic breathing and apnea: a theoretical study   总被引:9,自引:0,他引:9  
To elucidate the mechanisms that lead to sleep-disordered breathing, we have developed a mathematical model that allows for dynamic interactions among the chemical control of respiration, changes in sleep-waking state, and changes in upper airway patency. The increase in steady-state arterial PCO2 accompanying sleep is shown to be inversely related to the ventilatory response to CO2. Chemical control of respiration becomes less stable during the light stage of sleep, despite a reduction in chemoresponsiveness, due to a concomitant increase in "plant gain" (i.e., responsiveness of blood gases to ventilatory changes). The withdrawal of the "wakefulness drive" during sleep onset represents a strong perturbation to respiratory control: higher magnitudes and rates of withdrawal of this drive favor instability. These results may account for the higher incidence of periodic breathing observed during light sleep and sleep onset. Periodic ventilation can also result from repetitive alternations between sleep onset and arousal. The potential for instability is further compounded if the possibility of upper airway occlusion is also included. In systems with high controller gains, instability is mediated primarily through chemoreflex overcompensation. However, in systems with depressed chemoresponsiveness, rapid sleep onset and large blood gas fluctuations trigger repetitive episodes of arousal and hyperpnea alternating with apneas that may or may not be obstructive. Between these extremes, more complex patterns can arise from the interaction between chemoreflex-mediated oscillations of shorter-cycle-duration (approximately 36 s) and longer-wavelength (approximately 60-80 s) state-driven oscillations.  相似文献   

13.
Although the influence of altitude acclimatization on respiration has been carefully studied, the associated changes in hypoxic and hypercapnic ventilatory responses are the subject of controversy with neither response being previously evaluated during sleep at altitude. Therefore, six healthy males were studied at sea level and on nights 1, 4, and 7 after arrival at altitude (14,110 ft). During wakefulness, ventilation and the ventilatory responses to hypoxia and hypercapnia were determined on each occasion. During both non-rapid-eye-movement and rapid-eye-movement sleep, ventilation, ventilatory pattern, and the hypercapnic ventilatory response (measured at ambient arterial O2 saturation) were determined. There were four primary observations from this study: 1) the hypoxic ventilatory response, although similar to sea level values on arrival at altitude, increased steadily with acclimatization up to 7 days; 2) the slope of the hypercapnic ventilatory response increased on initial exposure to a hypoxic environment (altitude) but did not increase further with acclimatization, although the position of this response shifted steadily to the left (lower PCO2 values); 3) the sleep-induced decrements in both ventilation and hypercapnic responsiveness at altitude were equivalent to those observed at sea level with similar acclimatization occurring during wakefulness and sleep; and 4) the quantity of periodic breathing during sleep at altitude was highly variable and tended to occur more frequently in individuals with higher ventilatory responses to both hypoxia and hypercapnia.  相似文献   

14.
Acute hypercapnia may develop during periodic breathing from an imbalance between abnormal ventilatory patterns during apnea and/or hypopnea and compensatory ventilatory response in the interevent periods. However, transition of this acute hypercapnia into chronic sustained hypercapnia during wakefulness remains unexplained. We hypothesized that respiratory-renal interactions would play a critical role in this transition. Because this transition cannot be readily addressed clinically, we modified a previously published model of whole-body CO2 kinetics by adding respiratory control and renal bicarbonate kinetics. We enforced a pattern of 8 h of periodic breathing (sleep) and 16 h of regular ventilation (wakefulness) repeated for 20 days. Interventions included varying the initial awake respiratory CO2 response and varying the rate of renal bicarbonate excretion within the physiological range. The results showed that acute hypercapnia during periodic breathing could transition into chronic sustained hypercapnia during wakefulness. Although acute hypercapnia could be attributed to periodic breathing alone, transition from acute to chronic hypercapnia required either slowing of renal bicarbonate kinetics, reduction of ventilatory CO2 responsiveness, or both. Thus the model showed that the interaction between the time constant for bicarbonate excretion and respiratory control results in both failure of bicarbonate concentration to fully normalize before the next period of sleep and persistence of hypercapnia through blunting of ventilatory drive. These respiratory-renal interactions create a cumulative effect over subsequent periods of sleep that eventually results in a self-perpetuating state of chronic hypercapnia.  相似文献   

15.
Occlusion pressure and ventilation during sleep in normal humans   总被引:2,自引:0,他引:2  
Previous investigation in normal humans has demonstrated reduced ventilation and ventilatory responses to chemical stimuli during sleep. Most have interpreted this to be a product of decreasing central nervous system sensitivity to the normal stimuli that maintain ventilation, whereas other factors such as increasing airflow resistance could also contribute to this reduction in respiration. To improve our understanding of these events, we measured ventilation and occlusion pressures (P0.1) during unstimulated ventilation and rebreathing-induced hypercapnia during wakefulness and non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep. Eighteen subjects (10 males and 8 females) of whom seven were snorers (5 males and 2 females) were studied. Ventilation was reduced during both NREM and REM sleep (P less than 0.05), but this decrement in minute ventilation tended to be greater in snorers than nonsnorers. Unstimulated P0.1, on the other hand, was maintained or increased during sleep in all groups studied, with males and snorers showing the largest increase. The hypercapnic ventilatory response fell during both NREM and REM sleep and tended to be lower during REM than NREM sleep. However, the P0.1 response to hypercapnia during NREM sleep was well maintained at the waking level although the REM response was statistically reduced. These studies suggest that the mechanism of the reduction in ventilation and the hypercapnic ventilatory response seen during sleep, particularly NREM sleep, is likely to be multifactorial and not totally a product of decreasing central respiratory drive.  相似文献   

16.
Exogenous administration of orexin can promote wakefulness and respiration. Here we examined whether intrinsic orexin participates in the control of breathing in a vigilance state-dependent manner. Ventilation was recorded together with electroencephalography and electromyography for 6 h during the daytime in prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates. Respiratory parameters were separately determined during quiet wakefulness (QW), slow-wave sleep (SWS), or rapid eye movement (REM) sleep. Basal ventilation was normal in ORX-KO, irrespective of vigilance states. The hypercapnic ventilatory response during QW in ORX-KO (0.19 +/- 0.01 ml.min(-1).g(-1).%CO(2)(-1)) was significantly smaller than that in WT mice (0.38 +/- 0.04 ml.min(-1).g(-1).%CO(2)(-1)), whereas the responses during SWS and REM in ORX-KO were comparable to those in WT mice. Hypoxic responses during wake and sleep periods were not different between the genotypes. Spontaneous but not postsigh sleep apneas were more frequent in ORX-KO than in WT littermates during both SWS and REM sleep. Our findings suggest that orexin plays a crucial role both in CO(2) sensitivity during wakefulness and in preserving ventilation stability during sleep.  相似文献   

17.
We hypothesized that a decreased susceptibility to the development of hypocapnic central apnea during non-rapid eye movement (NREM) sleep in women compared with men could be an explanation for the gender difference in the sleep apnea/hypopnea syndrome. We studied eight men (age 25-35 yr) and eight women in the midluteal phase of the menstrual cycle (age 21-43 yr); we repeated studies in six women during the midfollicular phase. Hypocapnia was induced via nasal mechanical ventilation for 3 min, with respiratory frequency matched to eupneic frequency. Tidal volume (VT) was increased between 110 and 200% of eupneic control. Cessation of mechanical ventilation resulted in hypocapnic central apnea or hypopnea, depending on the magnitude of hypocapnia. Nadir minute ventilation in the recovery period was plotted against the change in end-tidal PCO(2) (PET(CO(2))) per trial; minute ventilation was given a value of 0 during central apnea. The apneic threshold was defined as the x-intercept of the linear regression line. In women, induction of a central apnea required an increase in VT to 155 +/- 29% (mean +/- SD) and a reduction of PET(CO(2)) by -4.72 +/- 0.57 Torr. In men, induction of a central apnea required an increase in VT to 142 +/- 13% and a reduction of PET(CO(2)) by -3.54 +/- 0.31 Torr (P = 0.002). There was no difference in the apneic threshold between the follicular and the luteal phase in women. Premenopausal women are less susceptible to hypocapnic disfacilitation during NREM sleep than men. This effect was not explained by progesterone. Preservation of ventilatory motor output during hypocapnia may explain the gender difference in sleep apnea.  相似文献   

18.
The oral and nasal contributions to inhaled ventilation were simultaneously quantified during sleep in 10 healthy subjects (5 men, 5 women) aged 43 +/- 5 yr, with normal nasal resistance (mean 2.0 +/- 0.3 cmH(2)O. l(-1). s(-1)) by use of a divided oral and nasal mask. Minute ventilation awake (5.9 +/- 0.3 l/min) was higher than that during sleep (5.2 +/- 0.3 l/min; P < 0.0001), but there was no significant difference in minute ventilation between different sleep stages (P = 0.44): stage 2 5.3 +/- 0.3, slow-wave 5.2 +/- 0.2, and rapid-eye-movement sleep 5.2 +/- 0.2 l/min. The oral fraction of inhaled ventilation during wakefulness (7.6 +/- 4%) was not significantly different from that during sleep (4.3 +/- 2%; mean difference 3.3%, 95% confidence interval -2.1-8.8%, P = 0.19), and no significant difference (P = 0.14) in oral fraction was observed between different sleep stages: stage two 5.1 +/- 2.8, slow-wave 4.2 +/- 1.8, rapid-eye-movement 3.1 +/- 1.7%. Thus the inhaled oral fraction in normal subjects is small and does not change significantly with sleep stage.  相似文献   

19.
In conscious rats, focal CO2 stimulation of the medullary raphe increases ventilation, whereas interference with serotonergic function here decreases the ventilatory response to systemic hypercapnia. We sought to determine whether repeated administration of a selective serotonin reuptake inhibitor in this region would increase the ventilatory response to hypercapnia in unanesthetized rats. In rats instrumented with electroencephalogram-electromyogram electrodes, 250 or 500 microM fluoxetine or artificial cerebrospinal fluid (aCSF) was microdialyzed into the medullary raphe for 30 min daily over 15 days. To compare focal and systemic treatment, two additional groups of rats received 10 mg x kg(-1) x day(-1) fluoxetine or vehicle systemically. Ventilation was measured in normocapnia and in 7% CO2 before treatment (day 0), acutely (days 1 or 3), on day 7, and on day 15. There was no change in normocapnic ventilation in any treatment group. Rats that received 250 microM fluoxetine microdialysis showed a significant 13% increase in ventilation in wakefulness during hypercapnia on day 7, due to an increase in tidal volume. In rats microdialyzed with 500 microM fluoxetine, there were 16 and 32% increases in minute ventilation during hypercapnia in wakefulness and sleep on day 7, and 20 and 28% increases on day 15, respectively, again due to increased tidal volume. There was no change in the ventilatory response to CO2 in rats microdialyzed with aCSF or in systemically treated rats. Chronic fluoxetine treatment in the medullary raphe increases the ventilatory response to hypercapnia in an unanesthetized rat model, an effect that may be due to facilitation of chemosensitive serotonergic neurons.  相似文献   

20.
Collapsibility of the human upper airway during normal sleep   总被引:6,自引:0,他引:6  
Upper airway resistance (UAR) increases in normal subjects during the transition from wakefulness to sleep. To examine the influence of sleep on upper airway collapsibility, inspiratory UAR (epiglottis to nares) and genioglossus electromyogram (EMG) were measured in six healthy men before and during inspiratory resistive loading. UAR increased significantly (P less than 0.05) from wakefulness to non-rapid-eye-movement (NREM) sleep [3.1 +/- 0.4 to 11.7 +/- 3.5 (SE) cmH2O.1-1.s]. Resistive load application during wakefulness produced small increments in UAR. However, during NREM sleep, UAR increased dramatically with loading in four subjects although two subjects demonstrated little change. This increment in UAR from wakefulness to sleep correlated closely with the rise in UAR during loading while asleep (e.g., load 12: r = 0.90, P less than 0.05), indicating consistent upper airway behavior during sleep. On the other hand, no measurement of upper airway behavior during wakefulness was predictive of events during sleep. Although the influence of sleep on the EMG was difficult to assess, peak inspiratory genioglossus EMG clearly increased (P less than 0.05) after load application during NREM sleep. Finally, minute ventilation fell significantly from wakefulness values during NREM sleep, with the largest decrement in sleeping minute ventilation occurring in those subjects having the greatest awake-to-sleep increment in UAR (r = -0.88, P less than 0.05). We conclude that there is marked variability among normal men in upper airway collapsibility during sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号