首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
详细观察和描述了非洲爪蟾Xenopus laevis眼的发生和发育变化过程,并分别对各发育时期视网膜的厚度进行了定量分析.非洲爪蟾眼的发牛开始于眼原基的形成,进而形成视泡;晶状体的发生是在视杯外壁增厚的同时诱导覆盖其上的胚胎外胚层内层增厚,形成预定晶状体板;在视网膜和晶状体共同诱导下,预定角膜上皮变为透明的角膜.在视杯出现之前,预定RPE的厚度由厚变薄,NR层不断地增厚直至结构功能完善.  相似文献   

2.
本研究以羧基荧光素为示踪物,发现在爪蟾胚胎内胚层大多数细胞之间,这种分子量为376 D的染料的转移,只有到原肠胚末期后才能测出,在此之前,这些细胞之间仅有电耦联存在。观察表明,这一差异不可能单由于细胞分裂体积减小所致,它反映了在原肠胚末期细胞间连接通讯能力由低水平到高水平的转变,是细胞的这一通讯能力发育的结果。这个转变与已知的两栖类内胚层细胞分化区域模式在神经胚早中期的建立在时间上相衔接,因此它是否是后者的必要条件值得进一步查明。在早期囊胚及以后割离的植物性半球的内胚层细胞中,或在中囊胚期之后割离再由单细胞重新聚合成的小细胞团中,其细胞间普遍出现羧基荧光素转移的时间与这些细胞在在体条件下的一致,说明其细胞间连接通讯能力的发育在这样的离体标本中能完全自主地进行。这些标本可以代替整体标本用来方便地测定该转变出现的时间。这种测定对研究各种因素对细胞间连接通讯能力发育的影响具有重要意义。  相似文献   

3.
MGC64236基因是本实验室用脐静脉内皮细胞免疫的兔血清筛选非洲爪蟾cDNA文库而鉴定的一个功能未知的基因.本研究提取非洲爪蟾受精卵总RNA通过RT-PCR得到基因MGC64236的开放读码框651 bp、编码202个氨基酸;运用生物信息学研究工具进行分析,发现该基因编码的蛋白有3个潜在的跨膜域,有一保守的结构域DUF1370, 可能通过其胞内部分的磷酸化机制在介导细胞内外的信号转导中发挥重要作用;在非洲爪蟾胚胎各个发育时期用RT-PCR检测该基因的表达情况,发现在非洲爪蟾胚胎发育的几个重要时期该基因都有高表达,而在成体则特异地表达于脑和眼等神经组织;构建绿色荧光融合蛋白真核表达载体并转染HEK293细胞, 对MGC64236蛋白的亚细胞定位,发现MGC64236蛋白比较特异地表达在细胞膜.  相似文献   

4.
肽聚糖识别蛋白(peptidoglycan recognition proteins,PGRPs)是固有免疫系统中一类重要的模式识别受体。该文首次从两栖类模式生物-非洲爪蟾(Xenopus tropicalis)中克隆得到了一个长型PGRP(XtPGRP-L)基因。XtPGRP-L具有5个外显子和4个内含子的基因组结构,该结构在进化的过程中比较保守。序列比对与系统进化分析显示XtPGRP-L具有保守的酰胺酶活性位点。蛋白质建模显示XtPGRP-L拥有保守的3-D结构。实时定量PCR检测显示,XtPGRP-L在非洲爪蟾胚胎早期不表达,到72h蝌蚪期开始表达。在成体的肝脏、肺、肠和胃高表达。同时,在LPS刺激后,XtPGRP-L在肝脏、肠和胃中呈明显上调表达。结果表明,XtPGRP-L在非洲爪蟾固有免疫系统中可能具有重要的作用。  相似文献   

5.
目的 初步探讨PTEN基因在早期神经嵴细胞迁移中的作用.方法 首先胚胎整体的原位杂交和免疫荧光方法检测鸡胚胎内源性的PTEN基因及蛋白水平的表达情况;其次,利用鸡胚胎体内半侧神经管转染的方法,使神经管一侧PTEN基因过表达,对侧神经管为正常对照侧;最后,通过Pax7的整体胚胎免疫荧光表达观察PTEN基因对其标记的部分神经嵴细胞迁移的影响.结果 内源性PTEN基因在mRNA和蛋白水平表达显示,其在早期胚胎HH4期的神经板即开始明显的表达;通过半侧过表达PTEN基因后观察到过表达PTEN基因侧的头部神经嵴细胞迁移与对照侧相比明显受到抑制,但对躯干部的影响并不明显.结论 PTEN基因可能抑制早期胚胎头部神经嵴细胞的迁移.  相似文献   

6.
1983年,Lohka和Masui首先报道,用精子染色质与卵提取物一起温育,可以组装成具有典型结构的细胞核。这种核不仅具有合成DNA的能力,而且还能进入M期。同年,  相似文献   

7.
Liu JT  Yang Y  Guo XG  Chen M  Ding HZ  Chen YL  Wang MR 《动物学研究》2011,32(5):485-491
越来越多的证据表明转录激活因子4(atf4)是一个与胚胎发育相关的基因.该文研究了非洲爪蛙atf4在胚胎发育过程中的表达和功能.atf4特异性地表达在非洲爪蛙胚胎的脑部、眼睛、血岛、原肾、肝脏、胰腺以及胃和十二指肠的部分细胞.在非洲爪蛙胚胎的动物极半球过表达适量(不影响胚胎整体形态发生的剂量)的atf4,对神经上皮细胞中sox3的表达无明显影响,也不引起细胞凋亡;但是对原始神经元的标记基因以及预定形成前脑、中脑、视网膜和晶状体的前体细胞的标记基因表达都有不同程度的抑制,最终导致无晶状体小眼的表型.该研究结果首次提示对正常的早期神经发育及眼睛形成而言,atf4的活性需受到严格的调控.  相似文献   

8.
目的 探讨Smad2/3a对脊椎动物神经嵴细胞发育的影响。方法 通过在斑马鱼胚胎单细胞时期显微注射smad2/3吗啉环修饰的反义寡核苷酸的方法,特异性敲降smad2/3基因的表达,至胚胎发育至6体节,利用整胚原位杂交检测神经嵴细胞特异性标记基因snail1b,sox10,foxd3和crestin的表达情况;通过casmad2 mRNA和smad3a mRNA显微注射的方法过表达smad2和smad3a,同样利用整胚原位杂交检测神经嵴细胞特异性标记基因crestin的表达情况;通过过表达casmad2及smad3a对下调smad2和smad3a的胚胎进行挽救。结果 smad2/3a被敲低后,crestin的表达量显著降低,而snail1b,sox10和foxd3的表达量无明显变化。smad3b被敲低后,crestin,snail1b,sox10和foxd3的表达量均无明显变化;过表达casmad2和smad3a均可导致crestin的表达量增高;过表达casmad2和smad3a可挽救由于smad2/3a敲降所造成crestin的低表达量。结论 Smad2和Smad3a对神经嵴细胞标记基因crestin的表达具有重要作用。  相似文献   

9.
采用SDS/氯仿/苯酚法和oligo(dT)纤维素亲和层析从人胎肝提取poly(A)~ mRNA,注入非洲爪蟾卵母细胞,翻译出肝细胞生长因子(HGF),产物能从卵母细胞中分泌。在9种细胞(包括人与小鼠的4种不同组织和5种细胞系)检测系统中,证明翻译的HGF与直接提取的HGF活性一致,应用滤膜超滤法估计分子量均在10~30kDa,可以初步认为两者是同一物质。从而,支持了人胎肝HGF是胎儿肝脏细胞基因表达的产物。  相似文献   

10.
【目的】柑橘全爪螨Panonychus citri在中国是一种重要的柑橘害虫,叶面肥在橘园的应用很普遍。本研究是为了明确柑橘施用尿素和复合氨基酸2种叶面肥对这种害螨生长发育和繁殖及柑橘苗生长的影响。【方法】在室内分别用尿素(0.50%)和复合氨基酸(0.17%)2种叶面肥喷施盆栽沙糖橘Citrus reticulata Blanco cv. Shatangju苗,以喷施清水为对照,探究叶面施肥对柑橘全爪螨生命表参数[净 增殖率(R0)、平均代时(T)、内禀增长率(rm)、周限增长率(λ)和种群趋势指数(I)]及柑橘苗生长参数(叶长、宽和面积, 茎长, 株高, 新梢的长度和数量)和叶片养分(N, P和K)含量的影响。【结果】柑橘全爪螨未成熟螨态的发育历期没有受到叶面肥的影响,但施用0.50%尿素的柑橘苗上第2若螨的存活率(95.40%)显著高于施用清水的对照(78.26%)和喷施0.17%复合氨基酸的处理(75.61%),其雌螨的繁殖力(42.1/♀)也显著高于对照(33.1/♀)。复合氨基酸处理柑橘苗上的雌螨寿命(19.5 d)显著长于尿素处柑橘苗上的雌螨寿命(14.8 d)和对照(14.5 d),复合氨基酸处理柑橘苗上的雄螨寿命(17.6 d)也显著长于对照(13.1 d)。总体上,在尿素处理的柑橘苗上柑橘全爪螨的净增殖率(R0)(17.88)和种群趋势指数(I)(18.08)值最高,2个参数都显著高于对照(分别为10.08和11.17)。施用2种叶面肥显著促进了柑橘苗叶片生长(叶长、叶宽、叶面积),其N, P和K含量以及氮钾比(N/K)也显著增加。【结论】柑橘苗叶面喷施尿素和复合氨基酸都可促进柑橘苗生长,喷施尿素会导致柑橘全爪螨种群的显著增长,而喷施复合氨基酸没有导致柑橘全爪螨种群显著增长。因此,推荐使用复合氨基酸代替尿素作为柑橘的叶面肥施用。但是,喷施复合氨基酸可显著延长柑橘全爪螨成螨的寿命,所以在使用时还应该加强对其种群的监测。  相似文献   

11.
The neural crest (NC) is a transient dorsal neural tube cell population that undergoes an epithelium-to-mesenchyme transition (EMT) at the end of neurulation, migrates extensively towards various organs, and differentiates into many types of derivatives (neurons, glia, cartilage and bone, pigmented and endocrine cells). In this protocol, we describe how to dissect the premigratory cranial NC from Xenopus laevis embryos, in order to study NC development in vivo and in vitro. The frog model offers many advantages to study early development; abundant batches are available, embryos develop rapidly, in vivo gain and loss of function strategies allow manipulation of gene expression prior to NC dissection in donor and/or host embryos. The NC explants can be plated on fibronectin and used for in vitro studies. They can be cultured for several days in a serum-free defined medium. We also describe how to graft NC explants back into host embryos for studying NC migration and differentiation in vivo.  相似文献   

12.
Wu J  Yang J  Klein PS 《Developmental biology》2005,279(1):220-232
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.  相似文献   

13.
In a screen for genes expressed in neural tissues and pronephroi, we isolated a novel gene, named dullard. Dullard protein contains the C-terminal conserved domain of NLI-IF (Nuclear LIM Interactor-Interacting Factor), a protein whose function is not yet characterized. Dullard mRNA was maternally derived and localized to the animal hemisphere. At neurula stages, the expression was in neural regions and subsequently localized to neural tissues, branchial arches, and pronephroi. Using antisense morpholino oligonucleotide-mediated inhibition, we showed that dullard was required for neural development. The translational knock-down of dullard resulted in failure of neural tube development and the embryos consequently showed a reduction of head development. Expression of neural marker genes in dullard-inhibited embryos was also suppressed. These results suggest that dullard is necessary for neural development.  相似文献   

14.
15.
16.
We are currently investigating factors that influence intracellular ice formation (IIF) in mouse oocytes and oocytes of the frog Xenopus. A major reason for choosing these two species is that while their eggs normally do not possess aquaporin channels in their plasma membranes, these channels can be made to express. We wish to see whether IIF is affected by the presence of these channels. The present Xenopus study deals with control eggs not expressing aquaporins. The main factor studied has been the effect of a cryoprotective agent [ethylene glycol (EG) or glycerol] and its concentration. The general procedure was to (a) cool the oocytes on a cryostage to slightly below the temperatures at which extracellular ice formation occurs, (b) warm them to just below the melting point, and (c) then re-cool them to -50 degrees C at 10 degrees C/min. In the majority of cases, IIF occurs well into step (c), but a sizeable minority undergo IIF in steps (a) or (b). The former group we refer to as low-temperature flashers; the latter as high-temperature flashers. IIF is manifested as abrupt blackening of the egg, which we refer to as "flashing." Observations on the Linkam cryostage are restricted to Stage I and II oocytes, which have diameters of 200 300 microm. In the absence of a cryoprotective agent, that is in frog Ringers, the mean flash temperature for the low-temperature freezers is -11.4 degrees C, although a sizeable percentage flash at temperatures much closer to that of the EIF (-3.9 degrees C). When EG is present, the flash temperature for the low-temperatures freezers drops significantly to approximately -20 degrees C for EG concentrations ranging from 0.5 to 1.5 M. The presence of 1.5 M glycerol also substantially reduces the IIF temperature of the low-temperature freezers; namely, to -29 degrees C, but 0.5 and 1 M glycerol exert little or no effect. The IIF temperatures observed using the Linkam cryostage agree well with those estimated by calorimetry [F.W. Kleinhans, J.F. Guenther, D.M. Roberts, P. Mazur, Analysis of intracellular ice nucleation in Xenopus oocytes by differential scanning calorimetry, Cryobiology 52 (2006) 128-138]. The IIF temperatures in Xenopus are substantially higher than those observed in mouse oocytes [P. Mazur, S. Seki, I.L. Pinn, F.W. Kleinhans, K. Edashige, Extra- and intracellular ice formation in mouse oocytes, Cryobiology 51 (2005) 29-53]. Perhaps that is a reflection of their much larger size.  相似文献   

17.
The formation of the nervous system is initiated when ectodermal cells adopt the neural fate. Studies in Xenopus demonstrate that inhibition of BMP results in the formation of neural tissue. However, the molecular mechanism driving the expression of early neural genes in response to this inhibition is unknown. Moreover, controversy remains regarding the sufficiency of BMP inhibition for neural induction. To address these questions, we performed a detailed analysis of the regulation of the soxB1 gene, sox3, one of the earliest genes expressed in the neuroectoderm. Using ectodermal explant assays, we analyzed the role of BMP, Wnt and FGF signaling in the regulation of sox3 and the closely related soxB1 gene, sox2. Our results demonstrate that both sox3 and sox2 are induced in response to BMP antagonism, but by distinct mechanisms and that the activation of both genes is independent of FGF signaling. However, both require FGF for the maintenance of their expression. Finally, sox3 genomic elements were identified and characterized and an element required for BMP-mediated repression via Vent proteins was identified through the use of transgenesis and computational analysis. Interestingly, none of the elements required for sox3 expression were identified in the sox2 locus. Together our data indicate that two closely related genes have unique mechanisms of gene regulation at the onset of neural development.  相似文献   

18.
Recently, we cloned and sequenced the cDNA of allurin, a sperm chemoattractant isolated from the jelly of Xenopus laevis eggs [Proc. Natl. Acad. Sci. U.S.A. 78 (2001) 11205]. In this report, we demonstrate that allurin mRNA is expressed almost exclusively in the oviduct and that its expression is increased 2.5-fold by human chorionic gonadotropin over a 12-h period. Both dot blots and immunocytochemistry show that allurin is secreted from the upper two thirds of the oviduct that includes the pars recta and the proximal pars convoluta. Allurin appears to be deposited on the ciliated surfaces of luminal epithelial cells that come in direct contact with eggs as they move through the oviduct. Immune staining also demonstrates the presence of allurin in the serosal capsule of the oviduct. In contrast, allurin is not found within the tubular jelly-secreting glands or ducts that constitute a major portion of the oviduct wall. Therefore, we hypothesize that allurin is synthesized by nonciliated secretory cells in the luminal epithelium of the oviduct, is displayed on the ciliary layer and then mechanically mixed with jelly, and applied to eggs as they progress down the oviduct. This hypothesis is consistent with the fact that eggs progressing down the oviduct initially show evidence of allurin being incorporated into the J1 layer. Subsequently, allurin within J1 diffuses outward to J3 and eggs stored in the uterus now demonstrate a J3 localization of this chemoattractant.  相似文献   

19.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

20.
Transient asymmetric Nodal signaling in the left lateral plate mesoderm (L LPM) during tailbud/early somitogenesis stages is associated in all vertebrates examined with the development of stereotypical left-right (L-R) organ asymmetry. In Xenopus, asymmetric expression of Nodal-related 1 (Xnr1) begins in the posterior L LPM shortly after the initiation of bilateral perinotochordal expression in the posterior tailbud. The L LPM expression domain rapidly shifts forward to cover much of the flank of the embryo before being progressively downregulated, also in a posterior-to-anterior direction. The mechanisms underlying the initiation and propagation of Nodal/Xnr1 expression in the L LPM, and its transient nature, are not well understood. Removing the posterior tailbud domain prevents Xnr1 expression in the L LPM, consistent with the idea that normal embryos respond to a posteriorly derived asymmetrically acting positive inductive signal. The forward propagation of asymmetric Xnr1 expression occurs LPM-autonomously via planar tissue communication. The shifting is prevented by Nodal signaling inhibitors, implicating an underlying requirement for Xnr1-to-Xnr1 induction. It is also unclear how asymmetric Nodal signals are modulated during L-R patterning. Small LPM grafts overexpressing Xnr1 placed into the R LPM of tailbud embryos induced the expression of the normally L-sided genes Xnr1, Xlefty, and XPitx2, and inverted body situs, demonstrating the late-stage plasticity of the LPM. Orthogonal Xnr1 signaling from the LPM strongly induced Xlefty expression in the midline, consistent with recent findings in the mouse and demonstrating for the first time in another species conservation in the mechanism that induces and maintains the midline barrier. Our findings suggest that there is long-range contralateral communication between L and R LPM, involving Xlefty in the midline, over a substantial period of tailbud embryogenesis, and therefore lend further insight into how, and for how long, the midline maintains a L versus R status in the LPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号