首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of transmission electron microscopy (the negative contrast and ultrathin section techniques) has made it possible to show that F. tularensis vaccine strain is capable, under normal conditions and in mixtures with other gram-negative and gram-positive bacteria, of forming cell aggregations with close contacts between cells, this contact being probably irreversible. The ultrastructure of bacteria taking part in the formation of intercellular contacts remains intact.  相似文献   

2.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

3.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

4.
The role of one of the major outer membrane proteins, rOmpB, of spotted fever group rickettsiae was examined. Antibodies generated against native rOmpB inhibited plaque formation by Rickettsia japonica in Vero cells when applied at the time of inoculation of the rickettsiae. However, antibodies to heat-denatured rOmpB did not. Moreover, the soluble recombinant rOmpB also inhibited plaque formation to some extent. Thus it seems that rOmpB functions at least in the adherence of rickettsiae to host cells. To obtain direct evidence of its function in the adherence to and invasion of Vero cells, we generated Escherichia coli transformed by the vector pET-22b(+) inserted with the ompB open reading frame of R. japonica. The recombinant bacteria expressed a 165-kDa protein consistent with the precursor of rOmpB. The protein reacted with monoclonal antibodies to heat-labile epitopes of rOmpB. Immunofluorescence of the recombinant bacteria demonstrated surface expression of the protein. It was shown by light microscopy and transmission and scanning electron microscopy that the bacteria adhered to and invaded Vero cells. Thus, although the recombinant precursor rOmpB was not processed on the outer membrane of E. coli, it functions during these steps. The manner of entry was similar to that of rickettsiae although at a slower rate.  相似文献   

5.
The process ofBeggiatoa trichome division was elucidated through phase-contrast microscopy and transmission and scanning electron microscopy. Trichome breakage and dispersion is accomplished by the formation of sacrificial cells (necridia) at various points within the trichome. Upon dying, the sacrificial cells lyse, dividing the trichome into two daughter trichomes. This process is identical with that found in many oscillatorian blue-green bacteria, but differs from the mechanism of trichome division in most of the other flexuous gliding bacteria. Cellular division within the trichome occurs by septation, involving the cytoplasmic membrane and the electron-dense L2 (peptidoglycan) layer. The outer envelope layers do not take part in division.  相似文献   

6.
《Autophagy》2013,9(1):36-45
Autophagy is an intracellular event that acts as an innate cellular defense mechanism to kill invading bacteria such as group A Streptococcus in nonphagocytic epithelial-like cells. The cellular events underlying autophagosome formation upon bacterial invasion remain unclear due to the biochemical complexity associated with uncharacterized bacterial components, and the difficulty of predicting the location as well as the timing of where/when autophagosome formation will take place. To overcome these problems, we monitored autophagosome formation in living nonphagocytic cells by inducing autophagy around artificial micrometer-sized beads instead of bacteria. Beads conjugated with bio-reactive molecules provide a powerful tool for examining biochemical properties in vitro. However, this technique has not been applied to living cells, except for phagocytes, because the beads cannot be easily incorporated into nonphagocytic cells. Here we report that micrometer-sized polystyrene beads coated with transfection reagents containing cationic lipids can be incorporated into nonphagocytic cells, and that autophagy can be efficiently induced around the beads in these cells. Monitoring the process of autophagosome formation for pH-sensitive fluorescent dye (pHrodo)-conjugated beads by fluorescence live cell imaging combined with correlative light and electron microscopy, we found that autophagosomes are formed around the beads after partial breakdown of the endosomal membrane. In addition, the beads were subsequently transferred to lysosomes within a couple of hours. Our findings demonstrate the cellular responses that lead to autophagy in response to pathogen invasion.  相似文献   

7.
The high degree of organization in mature bacterial colonies suggests specific interactions between the cells during colony development. We have used time-lapse video microscopy to find evidence for cell-cell interactions. In its initial stages, Escherichia coli K-12 colony morphogenesis displayed control of the geometry of cell growth and involved intimate side-by-side associations. When microcolonies developed from isolated single bacteria, a directed process of elongation and division resulted in the appearance of a symmetrical four-cell array. When growth began with separate but nearby bacteria, the daughters of different cells elongated towards each other and also lined up side by side. Interactions between microcolonies containing several hundred or more bacteria were visible several hours later. Control of cell morphogenesis at later stages of microcolony development was strain specific. These results show that E. coli K-12 cells respond to each other and adjust their cellular morphogenesis to form multicellular groups as they proliferate on agar.  相似文献   

8.
Nitrification at Low pH by Aggregated Chemolithotrophic Bacteria   总被引:7,自引:3,他引:7       下载免费PDF全文
A study was performed to gain insight into the mechanism of acid-tolerant, chemolithotrophic nitrification. Microorganisms that nitrified at pH 4 were enriched from two Dutch acid soils. Nitrate production in the enrichment cultures was indicated to be of a chemolithoautotrophic nature as it was (i) completely inhibited by acetylene at a concentration as low as 1 μmol/liter and (ii) strongly retarded under conditions of carbon dioxide limitation. Electron microscopy of the enrichment cultures showed the presence of bacteria that were morphologically similar to strains of known chemolithotrophic nitrifying genera. Many of the enriched bacteria, in particular those that were identified as ammonium oxidizers, were aggregated. Filtration experiments indicated that aggregated cells were able to nitrify at low pH, whereas single cells were not. It is hypothesized that cells inside the aggregates are protected against the toxicity of nitrous acid. Nitrification by aggregated chemolithoautotrophic bacteria may be the dominating process of nitrate formation in many acid soils as it does not appear to depend on the existence of microsites of high pH (acid-sensitive autotrophic nitrification) or on the availability of organic carbon (heterotrophic nitrification).  相似文献   

9.
The attachment of virulent strains of Agrobacterium tumefaciens to plant cells is the first step in the bacterial induction of tumors. Binding of A. tumefaciens to carrot tissue culture cells occurred as a two-step process. The initial step was the attachment of the bacteria to the plant cell wall. Living plant cells were not required. Bacterial attachment to heat-killed or glutaraldehyde-fixed carrot cells proceeded with only slightly altered kinetics and unaltered bacterial strain specificity. After the bacteria bound to the carrot cell surface, scanning electron microscopy showed that fibrils developed, surrounded the bacteria, and anchored them to the plant cell surface. These fibrils were synthesized by the bacteria and not by the plant cell since they were also made after the attachment of A. tumefaciens to dead carrot cells and since under some conditions the bacteria synthesized fibrils in the absence of plant cells. Calcofluor staining, acid hydrolysis, enzymatic digestion studies, and infrared spectroscopy showed that the fibrils were composed of cellulose. The formation of these cellulose fibrils occurred during the attachment of virulent strains of A. tumefaciens to plant cells in vitro. The fibrils anchored the bacteria to the plant cell surface and entrapped additional bacteria. The multiplication of entrapped and attached bacteria resulted in the formation of large clusters of bacteria held close to the plant cell wall and plasma membrane by cellulose fibrils. This high concentration of bacteria may facilitate transfer of Ti plasmid deoxyribonucleic acid to the plant cell resulting in the formation of tumors.  相似文献   

10.
Studies were carried out on guinea pigs and albino rats, intranasally infected with P. pseudomallei C-141. The cells of bronchovesicular exudate were obtained from animals 1, 4 and 24 hours after infection. Electron microscopy was applied to study the process of interaction of the agent and alveolar macrophages. Bacteria were shown to form a capsule which permitted avoiding phagocytosis, when entering the host respiratory system. Microbes that failed to form a capsule were absorbed by macrophages and enclosed in a phagosome. Then some bacteria were destroyed by the lysosomal enzymes, the other synthesized a capsule, which protected them against the effect of phagolysosome content. There were also such microbes which escaped from a phagosome prior to fusion with lysosomes and parasitized in phagocytic cytoplasma forming a capsule there. By the end of the first 24 hours of observation the intact encapsulated microbe species were found to prevail in the host cells.  相似文献   

11.
It has been shown that the culture of Bacillus thuringiensis subsp. gall. 69-6 dissociates into R- and S-variants in chemostat. Although under some conditions the sporogenesis and the synthesis of S-variant toxin began two hours earlier than these processes in R-variant cells which were observed, respectively, after 10 or 12 hours from the beginning of the experiment, the intensities of sporogenesis and toxin production as well as the exit of spores and toxin excretion from cells were similar after 24 hours. The resistance to the bacteriophage present in chemostat was the advantage of S-variant cells. The data obtained by electron microscopy indicate that the phagoresistance is caused by the structural organization of the S-variant cell wall. Its peptidoglycan component is thin and is distinguished by crumb structure. By means of negative contrast microscopy it was found that the surface T-layer of R-variant cell wall was characterized by the tetragonal packaging of protein subunits indicating the regular orientation of phagoreceptors in it. The redistribution of protein subunits in the T-layer of S-variant cell wall prevented from the adsorbance of bacteriophages on the cell surface. The adsorbance of phages on the surface of R-variant cells was observed rather often. It led to the degradation of peptidoglycan, the formation of protoplasts and lysis.  相似文献   

12.
Formation of O-ethylhomoserine by bacteria   总被引:3,自引:2,他引:1       下载免费PDF全文
Resting cells of Corynebacterium sp. E17 formed O-ethylhomoserine from ethyl alcohol for a few hours. Addition of l-homoserine greatly enhanced its formation. Thus, the formation of O-ethylhomoserine from ethyl alcohol by 27 bacteria, 6 yeasts, and 4 fungi was investigated by using growing cultures and resting cells in the presence of l-homoserine. The O-ethylhomoserine formed in the culture supernatant fluids or supernatant fluids of the reaction mixtures was identified by paper chromatography. Many organisms which were incapable of forming O-ethylhomoserine with growing cultures formed it with resting cells. The formation of O-ethylhomoserine appears to be restricted to strains of Brevibacterium, Corynebacterium, Bacillus, Mycobacterium, Nocardia, and Streptomyces.  相似文献   

13.
Scanning electron microscopy and X-ray dispersive energy microanalysis were used to investigate the formation of carbonate crystals by Deleya halophila. The formation of calcium carbonate crystals (polymorphous aragonite) by D. halophila is a sequential process that commences with a nucleus formed by the aggregation of a few calcified bacterial cells and the subsequent accumulation of more calcified cells and carbonate, which acts to weld the bacteria together. The process leads to the formation of spherical bioliths measuring approximately 50 μm in diameter. The mechanism of carbonate precipitation by D. halophila under our working conditions represents a process of induced biomineralization.  相似文献   

14.
Ultrastructural changes in tomato leaves of susceptible cv. Peto 95 and resistant cv. Ontario 7710 infected with Pseudomonas syringae pv. tomato were followed by transmission electron microscopy. Up to 48 hours from the inoculation host cells of both cultivars looked quite normal and no bacteria were visible in the intercellular spaces; bacterial cells were found only in the substomatal chambers. Afterwards, the leaf cells of cv. Peto 95 began to degenerate and bacteria invaded the intercellular spaces which seemed enlarged. After 15 days the disorganization was complete: tomato cells were plasmolyzed and the intercellular spaces were filled with bacteria. In the leaves of resistant cv. Ontario 7710 no bacteria were observed later than 48 hours and no visible modifications occurred up to 15 days after the inoculation.  相似文献   

15.
We developed an in vitro tissue-culture model to analyze the process involved in mycobacterial spread through lung epithelial cell monolayers. A549 cells were infected with low numbers of viable Mycobacterium tuberculosis bacilli expressing the gfp gene. Subsequent addition of a soft agarose overlay prevented the dispersal of the bacilli from the initial points of attachment. By fluorescence microscopy the bacteria were observed to infect and grow within the primary target cells; this was followed by lysis of the infected cells and subsequent infection of adjacent cells. This process repeated itself until an area of clearing (plaque formation) was observed. The addition of amikacin after initial infection did not prevent intracellular growth; however, subsequent plaque formation was not observed. Plaque formation was also observed after infection with Mycobacterium bovis BCG bacilli, but the plaques were smaller than those formed after infection with M. tuberculosis. These observations reinforce the possibility that cell-to-cell spreading of M. tuberculosis bacilli, particularly early in the course of infection within lung macrophages, pneumocytes, and other cells, may be an important component in the infectious process.  相似文献   

16.
The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs) against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼10–15 nm) has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM). The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.  相似文献   

17.
Yersinia enterocolitica, a facultative intracellular pathogen of mammals, readily enters (i.e., invades) cultured eukaryotic cells, a process that can be conferred by the cloned inv locus of the species. We have studied the mechanism by which the product of inv, a microbial outer membrane protein termed "invasin," mediates the internalization of bacteria by HEp-2 cells and chicken embryo fibroblasts. Invasin-bearing bacteria initially bound the filopodia and the leading edges of cultured cells. Multiple points of contact between the bacterial surface and the surface of the cell ensued and led to the internalization of the bacterium within an endocytic vacuole; the same multi-step process could be induced by an inert particle coated with invasin-containing membranes. Both adherence and internalization were blocked by an antisera directed against the beta 1 integrin cell-adherence molecule. Ultrastructural studies of detergent-insoluble cytoskeletons from infected cells and immunofluorescence microscopy of phalloidin-labeled cells showed alterations in the structure of the cytoskeleton during the internalization process including the accumulation of polymerized actin around entering bacteria. Bacterial entry was prevented by cytochalasin D indicating that the internalization process requires actin microfilament function. Possible linkages between beta 1 containing integrins and the cytoskeleton were examined during the internalization process through the use of protein-specific antibodies and immunofluorescence microscopy. Like actin, the actin-associated proteins filamin, talin and the beta 1 integrin subunit were also found to accumulate around entering bacteria. These findings suggest that the invasin-mediated internalization process is associated with cytoskeletal reorganization.  相似文献   

18.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The time course and orientation of attachment of Rhizobium trifolii 0403 to white clover root hairs was examined in slide cultures by light and electron microscopy. Inocula were grown for 5 days on defined BIII agar medium and represented the large subpopulation of fully encapsulated single cells which uniformly bind the clover lectin trifoliin A. When 10(7) cells or more were added per seedling, bacteria attached within minutes, forming randomly oriented clumps at the root hair tips. Several hours later, single cells attached polarly to the sides of the root hair. This sequence of attachment to clover root hairs was selective for R. trifolii at inoculum sizes of 10(7) to 4 X 10(8) per seedling, specifically inhibited if 2-deoxy-D-glucose, a hapten for trifoliin A, was present in the inoculum, and not observed when 4 X 10(8) cells were added to alfalfa seedling roots or to large clover root cell wall fragments which lacked trifoliin A but still had trifoliin A receptors. Once attached, R. trifolii 0403 became progressively less detachable with 2-deoxy-D-glucose. At smaller inoculum sizes (10(5) to 10(6) cells per seedling), there was no immediate clumping of R. trifolii at clover root hair tips, although polar binding of bacteria along the root hair surface was observed after 4 h. The interface between polarly attached bacteria and the root hair cell wall was shown to contain trifoliin A by immunofluorescence microscopy. Also, this interface was shown by transmission electron microscopy to contain electron-dense granules of host origin. Scanning electron microscopy revealed an accumulation of extracellular microfibrils associated with the lateral and polar surfaces of the attached bacteria, detectable after 12 h of incubation with seedling roots. At this same time, there was a significant reduction in the effectiveness of 2-deoxy-D-glucose in dislodging bacteria already attached to root hairs and an increase in firm attachment of bacteria to the root hair surface, which withstood the hydrodynamic shear forces of high-speed vortexing. These results are interpreted as a sequence of phases in attachment, beginning with specific reversible interactions between bacterial and plant surfaces (phase I attachment), followed by production of extracellular microfibrils which firmly anchor the bacterium to the root hair (phase 2 adhesion). Thus, attachment of R. trifolii to clover root hairs is a specific process requiring more than just the inherent adhesiveness of the bacteria to the plant cell wall.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Experiments on voles belonging to the tularemia-sensitive species Microtus rossiae-Meridionalis, infected with Francisella tularensis highly virulent strain 503, have been carried out with the aim of studying the pathogenesis of chronic tularemia. The experiments have been made with the use of live and killed microbial cells. The significance of the multiple oral administration of killed bacteria to voles for the development of the atypical form of infection has been shown. The possibility of the early (on day 2) formation of antibodies in the blood of some of the animals has been established. Repeated feeding has been found to lead to almost 100% seroconversion in the animals. This fact can be attributed to the rapid spread of the antigen (1-5 hours) in the organs of individual animals. Besides, the causative agent is present in large amounts in lymphoid formations of the intestinal tract and in the lumen of the intestine, which creates conditions for the early contact of the massive dose of the antigen with immunocompetent cells and for the rapid development of systemic and local immune response. Morphological study indicates the presence of the rapid (24 hours) proliferative reaction of the cells making up the lymphoid apparatus of the intestine, their plasmocytic and macrophagal transformation. Thus, after the infection of voles with a mixture of live and killed bacteria the development of the early phases of the infectious process occurs simultaneously with the systemic and local transformation of the macroorganism, which contributes to the benevolent course of the infectious process in some of the animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号