首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition pores. On the other hand, activation of mitochondrial ATP-sensitive K+ channels (mitoKATP) protects the heart against ischemic damage. This study examined the effects of mitoKATP and mitochondrial permeability transition on isolated rat heart mitochondria and cardiac cells submitted to simulated ischemia and reperfusion (cyanide/aglycemia). Both mitoKATP opening, using diazoxide, and the prevention of mitochondrial permeability transition, using cyclosporin A, protected against cellular damage, without additive effects. MitoKATP opening in isolated rat heart mitochondria slightly decreased Ca2+ uptake and prevented mitochondrial reactive oxygen species production, most notably in the presence of added Ca2+. In ischemic cells, diazoxide decreased ROS generation during cyanide/aglycemia while cyclosporin A prevented oxidative stress only during simulated reperfusion. Collectively, these studies indicate that opening mitoKATP prevents cellular death under conditions of ischemia/reperfusion by decreasing mitochondrial reactive oxygen species release secondary to Ca2+ uptake, inhibiting mitochondrial permeability transition.  相似文献   

2.
It has been proposed that activation of the mitochondrial ATP-sensitive potassium channel (mitoKATP) is part of signaling pathways triggering the cardioprotection afforded by ischemic preconditioning of the heart. This work was to analyze the mitochondrial function profile of Langendorff-perfused rat hearts during the different phases of various ischemia-reperfusion protocols. Specifically, skinned fibers of ischemic preconditioned hearts exhibit a decline in the succinate-supported respiration and complex II activity during ischemia, followed by a recovery during reperfusion. Meanwhile, the apparent affinity of respiration for ADP (which reflects the matrix volume expansion) is increased during preconditioning stimulus and, to a larger extent, during prolonged ischemia. This evolution pattern is mimicked by diazoxide and abolished by 5-hydroxydecanoate. It is concluded that opening the mitoKATP channel mediates the preservation of mitochondrial structure-function via a mitochondrial matrix shrinkage and a reversible inactivation of complex II during prolonged ischemic insult.  相似文献   

3.
In the present study, we describe the existence of mitochondrial ATP-dependent K+ channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects.  相似文献   

4.
Diabetes leads to exacerbating brain injury after ischemic stroke, but the underlying mechanisms and whether therapeutic intervention with anesthetic post-conditioning can induce neuroprotection in this population are not known. We tested the hypothesis that alteration of brain mitochondrial (mito) KATP channels might cause exacerbating brain injury after ischemic stroke and attenuate anesthetic post-conditioning induced neuroprotection in diabetes. We also examined whether hyperglycemic correction with insulin would restore anesthetic post-conditioning in diabetes. Non-diabetic rats and diabetic rats treated with or without insulin were subjected to focal cerebral ischemia for 2 h followed by 24 h of reperfusion. Post-conditioning was performed by exposure to sevoflurane for 15 min, immediately at the onset of reperfusion. The role of the mitoKATP channel was assessed by administration of a selective blocker 5-hydroxydecanoate (5-HD) before sevoflurane post-conditioning or by diazoxide (DZX), a mitoKATP channel opener, given in place of sevoflurane. Compared with non-diabetic rats, diabetic rats had larger infarct volume and worse neurological outcome at 24 h after ischemia. Sevoflurane or DZX reduced the infarct volume and improved neurological outcome in non-diabetic rats but not in diabetic rats, and the protective effects of sevoflurane in non-diabetic rats were inhibited by pretreatment with 5-HD. Molecular studies revealed that expression of Kir6.2, an important mitoKATP channel component, was decreased in the brain of diabetic rats as compared to non-diabetic rats. In contrast, hyperglycemic correction with insulin in diabetic rats normalized expression of brain Kir6.2, reduced ischemic brain damage and restored neuroprotective effects of sevoflurane post-conditioning. Our findings suggest that decreased brain mitoKATP channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by anesthetic post-conditioning in diabetes. Insulin glycemic control in diabetes may restore the neuroprotective effects of anesthetic post-conditioning by modulation of brain mitoKATP channel.  相似文献   

5.
Diazoxide, a mitochondrial ATP-sensitive potassium (mitoKATP) channel opener, protects the heart from ischemia–reperfusion injury. Diazoxide also inhibits mitochondrial complex II-dependent respiration in addition to its preconditioning effect. However, there are no prior studies of the role of diazoxide on post-ischemic myocardial oxygenation. In the current study, we determined the effect of diazoxide on the suppression of post-ischemic myocardial tissue hyperoxygenation in vivo, superoxide (O2 ??) generation in isolated mitochondria, and impairment of the interaction between complex II and complex III in purified mitochondrial proteins. It was observed that diazoxide totally suppressed the post-ischemic myocardial hyperoxygenation. With succinate but not glutamate/malate as the substrate, diazoxide significantly increased ubisemiquinone-dependent O2 ?? generation, which was not blocked by 5-HD and glibenclamide. Using a model system, the super complex of succinate-cytochrome c reductase (SCR) hosting complex II and complex III, we also observed that diazoxide impaired complex II and its interaction with complex III with no effect on complex III. UV–visible spectral analysis revealed that diazoxide decreased succinate-mediated ferricytochrome b reduction in SCR. In conclusion, our results demonstrated that diazoxide suppressed the in vivo post-ischemic myocardial hyperoxygenation through opening the mitoKATP channel and ubisemiquinone-dependent O2 ?? generation via inhibiting mitochondrial complex II-dependent respiration.  相似文献   

6.
7.
The role of mitochondrial KATP (mitoKATP) channels in renal ischemia-reperfusion injury is controversial with studies showing both protective and deleterious effects. In this study, we compared the effects of the putative mitoKATP opener, diazoxide, and the mitoKATP blocker, 5-hydroxydecanoate (5-HD) on cytotoxicity and apoptosis in tubular epithelial cells derived from rat (NRK-52E) and pig (LLC-PK1) following in vitro ischemic injury. Following ATP depletion-recovery, there was a significant increase in cytotoxicity in both NRK cells and LLC-PK1 cells although NRK cells were more sensitive to the injury. Diazoxide treatment attenuated cytotoxicity in both cell types and 5-HD treatment-increased cytotoxicity in the sensitive NRK cells in a superoxide-dependant manner. The protective effect of diazoxide was also reversed in the presence of 5-HD in ATP-depleted NRK cells. The ATP depletion-mediated increase in superoxide was enhanced by both diazoxide and 5-HD with the effect being more pronounced in the cells undergoing 5-HD treatment. Further, ATP depletion-induced activation of caspase-3 was decreased by diazoxide in NRK cells. In order to determine the signaling pathways involved in apoptosis, we examined the activation of Erk and JNK in ATP-depleted NRK cells. Diazoxide-activated Erk in ATP-depleted cells, but did not have any effect on JNK activation. In contrast, 5-HD did not impact Erk levels but increased JNK activation even under controlled conditions. Further, the use of a JNK inhibitor with 5-HD reversed the deleterious effects of 5-HD. This study demonstrates that in cells that are sensitive to ATP depletion-recovery, mitoKATP channels protect against ATP depletion-mediated cytotoxicity and apoptosis through Erk- and JNK-dependant mechanisms.  相似文献   

8.
The opening of mitochondrial ATP-sensitive K+ (mitoKATP) channels triggers or mediates the infarct size (IS)-limiting effect of ischemic preconditioning (IP). Because ecto-5′-nucleotidase related to IP is activated by PKC, we tested whether the opening of mitoKATP channels activates PKC and contributes to either activation of ecto-5′-nucleotidase or IS-limiting effect. In dogs, IP procedure decreased IS and activated ecto-5′-nucleotidase, both of which were mimicked by transient exposure to either cromakalim or diazoxide, and these effects were blunted by either GF109203X (a PKC inhibitor) or 5-hydroxydecanoate (a mitoKATP channel blocker), but not by HMR-1098 (a surface sarcolenmal KATP channel blocker). Either cromakalim or diazoxide activated both PKC and ecto-5′-nucleotidase, which was blunted by either GF109203X or 5-hydroxydecanoate, but not by HMR-1098. We concluded that the opening of mitoKATP channels contributes to either activation of ecto-5′-nucleotidase or the infarct size-limiting effect via activation of PKC in canine hearts.  相似文献   

9.
Background: There is increasing evidence that mitochondria – owning a high degree of autonomy within the cell – might represent the target organelles of the myocardial protection afforded by ischemic preconditioning. It was the aim of the study to investigate a possible subcellular correlate to ischemic preconditioning at the mitochondrial level. In addition, we tested whether this protection depends on mitochondrial ATP-dependent potassium channels (K ATP) and an might involve an attenuation of mitochondrial ATP hydrolysis during sustained anoxia.Methods and Results: Sustained anoxia (A, 14 min) and reoxygenation (R) completely inhibited state 3 and state 4 respiration of isolated ventricular mitochondria from Wistar rats. An antecedent brief anoxic incubation (4 min) followed by reoxygenation (2 min) prevented this loss of mitochondrial function. The protection afforded by anoxic preconditioning could be mimicked by the K ATP opener diazoxide (30 μmol/l) and was completely inhibited by the K ATP blocker 5-hydroxydecanoic acid (300 μmol/l). Structural mitochondrial integrity, as estimated from externalization of the mitochondrial enzymes creatine kinase and glutamateoxalacetate transaminase, remained unchanged between the groups, as did mitochondrial ATP loss during anoxia.Conclusion: For the first time, we provide direct evidence for a subcellular preconditioning-like functional mitochondrial adaptation to sustained anoxia. This effect apparently depends on opening of KATP but is independent of ATP preservation.  相似文献   

10.
In addition to their role in energy transduction, mitochondria play important non-canonical roles in cell pathophysiology, several of which utilize the mitochondrial ATP-sensitive K+ channel (mitoKATP). In the normal heart, mitoKATP regulates energy transfer through its regulation of intermembrane space volume and is accordingly essential for the inotropic response during periods of high workload. In the ischemic heart, mitoKATP is the point of convergence of protective signaling pathways and mediates inhibition of the mitochondrial permeability transition, and thus necrosis. In this review, we outline the experimental evidence that support these roles for mitoKATP in health and disease, as well as our hypothesis for the mechanism by which complex cardioprotective signals that originate at plasma membrane receptors traverse the cytosol to reach mitochondria and activate mitoKATP.  相似文献   

11.
It is known that the mitochondrial ATP-sensitive potassium channel (mitoKATP) plays a key role in protecting myocardium during ischemia. We have suggested that the mechanism of this protection is associated with the potassium cycle in mitochondria. In this paper, for the first time, a direct proof was obtained of the existence of a cycle of potassium ions in rat liver mitochondria that are associated with the functioning of mitoKATP. Activation of the cycle was recorded by optical density changes of mitochondrial suspension in the form of two or three swelling-contraction waves of the organelles. Using activators and inhibitors of mitoKATP we showed that a significant role in the potassium cycle belongs to the channel. It was found that in vitro sildenafil has a direct effect on mitoKATP, being its activator. The results obtained indicate that the cardioprotective effect of sildenafil observed previously is associated with the activation of mitoKATP. In order to study the structure and volume changes of mitochondria in various stages of the cycle in the presence of potassium channel modulators, the electron microscopy studies of mitochondria preparations were carried out. A correlation between the optical density decrease of mitochondrial suspension and the swelling of mitochondria was revealed. The data obtained in this study suggest participation of mitoKATP in the protection of tissues from hypoxic damage.  相似文献   

12.

Ischemic postconditioning (PostC) is known to reduce cerebral ischemia/reperfusion (I/R) injury; however, whether the opening of mitochondrial ATP-dependent potassium (mito-KATP) channels and mitochondrial permeability transition pore (mPTP) cause the depolarization of the mitochondrial membrane that remains unknown. We examined the involvement of the mito-KATP channel and the mPTP in the PostC mechanism. Ischemic PostC consisted of three cycles of 15 s reperfusion and 15 s re-ischemia, and was started 30 s after the 7.5 min ischemic load. We recorded N-methyl-d-aspartate receptors (NMDAR)-mediated currents and measured cytosolic Ca2+ concentrations, and mitochondrial membrane potentials in mouse hippocampal pyramidal neurons. Both ischemic PostC and the application of a mito-KATP channel opener, diazoxide, reduced NMDAR-mediated currents, and suppressed cytosolic Ca2+ elevations during the early reperfusion period. An mPTP blocker, cyclosporine A, abolished the reducing effect of PostC on NMDAR currents. Furthermore, both ischemic PostC and the application of diazoxide potentiated the depolarization of the mitochondrial membrane potential. These results indicate that ischemic PostC suppresses Ca2+ influx into the cytoplasm by reducing NMDAR-mediated currents through mPTP opening. The present study suggests that depolarization of the mitochondrial membrane potential by opening of the mito-KATP channel is essential to the mechanism of PostC in neuroprotection against anoxic injury.

  相似文献   

13.
Insulin resistance (IR) precedes the onset of Type 2 diabetes, but its impact on preconditioning against myocardial ischemia-reperfusion injury is unexplored. We examined the effects of diazoxide and ischemic preconditioning (IPC; 5-min ischemia and 5-min reperfusion) on ischemia (30 min)-reperfusion (240 min) injury in young IR Zucker obese (ZO) and lean (ZL) rats. ZO hearts developed larger infarcts than ZL hearts (infarct size: 57.3 +/- 3% in ZO vs. 39.2 +/- 3.2% in ZL; P < 0.05) and also failed to respond to cardioprotection by IPC or diazoxide (47.2 +/- 4.3% and 52.5 +/- 5.8%, respectively; P = not significant). In contrast, IPC and diazoxide treatment reduced the infarct size in ZL hearts (12.7 +/- 2% and 16.3 +/- 6.7%, respectively; P < 0.05). The mitochondrial ATP-activated potassium channel (K(ATP)) antagonist 5-hydroxydecanoic acid inhibited IPC and diazoxide-induced preconditioning in ZL hearts, whereas it had no effect on ZO hearts. Diazoxide elicited reduced depolarization of isolated mitochondria from ZO hearts compared with ZL (73 +/- 9% in ZL vs. 39 +/- 9% in ZO; P < 0.05). Diazoxide also failed to enhance superoxide generation in isolated mitochondria from ZO compared with ZL hearts. Electron micrographs of ZO hearts revealed a decreased number of mitochondria accompanied by swelling, disorganized cristae, and vacuolation. Immunoblots of mitochondrial protein showed a modest increase in manganese superoxide dismutase in ZO hearts. Thus obesity accompanied by IR is associated with the inability to precondition against ischemic cardiac injury, which is mediated by enhanced mitochondrial oxidative stress and impaired activation of mitochondrial K(ATP).  相似文献   

14.
Cytoprotective Channels in Mitochondria   总被引:2,自引:0,他引:2  
Several ion channels are expressed in the inner and outer membranes of mitochondria, but the exact function of these channels is not completely understood. The opening of certain channels is thought to induce the process of cell death or apoptosis. However, other channels of the inner mitochondrial membrane help protect against ischemic injury and oxidative stress. Mitochondrial ATP-sensitive K+ channels (mitoKATP) and mitochondrial Ca2+-activated K+ channels (mitoKCa) are the primary protective channels that have been identified. In addition to their thermogenic role, certain isoforms of uncoupling proteins are also shown to have protective roles in certain experimental models. This review attempts to provide an updated overview of the proposed mechanism for the protective function of these membrane proteins. Controversies and unanswered questions regarding these channels will also be discussed.  相似文献   

15.
The mitochondrial ATP-regulated potassium (mitoKATP) channel has been suggested as trigger and effector in myocardial ischemic preconditioning. However, molecular and pharmacological properties of the mitoKATP channel remain unclear. In the present study, single-channel activity was measured after reconstitution of the inner mitochondrial membrane from bovine ventricular myocardium into bilayer lipid membrane. After incorporation, a potassium-selective current was recorded with mean conductance of 103 ± 9 pS in symmetrical 150 mM KCl. Single-channel activity of this reconstituted protein showed properties of the mitoKATP channel: it was blocked by 500 μM ATP/Mg, activated by the potassium-channel opener diazoxide at 30 μM, inhibited by 50 μM glibenclamide or 150 μM 5-hydroxydecanoic acid, and was not affected by the plasma membrane ATP-regulated potassium-channel blocker HMR1098 at 100 μM. We observed that the mitoKATP channel was blocked by quinine in the micromolar concentration range. The inhibition by quinine was additionally verified with the use of 86Rb+ flux experiments and submitochondrial particles. Quinine inhibited binding of the sulfonylurea derivative [3H]glibenclamide to the inner mitochondrial membrane. We conclude that quinine inhibits the cardiac mitoKATP channel by acting on the mitochondrial sulfonylurea receptor.(P. Bednarczyk and A. Kicińska) These authors contributed equally to this work.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

16.
New properties of mitochondrial ATP-regulated potassium channels   总被引:1,自引:0,他引:1  
The ATP-regulated potassium channel is present in the inner membrane of heart mitochondria. In this study, the activity of a single channel was measured after reconstituting the myocardium inner mitochondrial membrane into a planar lipid bilayer. We provide direct evidence of vectorial pH regulation of mitoKATP channels. When the matrix side was alkalized, this changed the channel conductance, the open probability, and the mean open and closed dwell time distributions. The conductance of the mitoKATP channel increased from about 110 ± 8 to 145 ± 5 pS upon changing the pH from 7.2 to 8.2. This effect was reversed by reverting the pH to the neutral value. The mitoKATP channel activity was not altered by alkalization of the cytosolic side of the planar lipid bilayer. We also observed that acidification from pH 7.2 to 6.2, in either the matrix or cytosolic compartments, decreased the open probability of the channel. This effect was reversed by perfusion with a pH 7.2 medium. Additionally, our results suggest that the mitoKATP channel is regulated by multiple phosphorylation events. The channel activity was inhibited by an ATP/Mg2+ complex, but not by ATP alone, nor by a non-hydrolysable ATP analog, e.g. AMP-PNP/Mg2+. The mitoKATP channel “run-down” was reversed by incubating with the ATP/Mg2+ complex on both sides of the planar lipid bilayer. We conclude that both pH and ATP play an important regulatory role for the cardiac mitoKATP channel with respect to the phenomenon of ischemia–reperfusion.  相似文献   

17.
Inhibition of the mitochondrial KATP (mitoKATP) channel abrogates the beneficial effects of preconditioning induced by a brief episode of sublethal ischemia. We studied the effect of 5-hydroxydecanoate, a well-known inhibitor of the mitoKATP channel, on swelling of isolated liver and brain mitochondria. Volume changes were determined by measurement of light absorbance at 540 nm. Mitochondrial swelling induced by adding Ca2+ ions correlated with opening of the permeability transition pore as shown by modulation by 1 μM cyclosporin A. In brain mitochondria, 5-hydroxydecanoate did not significantly affect Ca2+-induced swelling. In contrast, 50 or 500 μM 5-hydroxydecanoate increased swelling of liver mitochondria by 9.7 ± 5.1% (n = 6, P = 0.057) and 29.4 ± 1.4% (n = 5, P < 0.0001), respectively. The effect of 5-hydroxydecanoate was blocked by cyclosporin A and was dependent on the presence of potassium in the medium. In medium containing 200 μM ATP to inhibit the mitoKATP channel, 5–hydroxydecanoate did not further increase Ca2+-induced swelling. We conclude that inhibition of the mitoKATP channel exerts its detrimental effect by facilitation of permeability transition pore opening.  相似文献   

18.
Pretreatment with diazoxide, mitochondrial K(ATP) channel opener, was found to protect the rat heart against ischemia/reperfusion injury. Our aim was also to characterize the effects of diazoxide on the alterations of regulatory myocardial proteins, on mitochondrial ultrastructure, integrity and induction of apoptotic responses. Isolated rat hearts were Langendorff perfused and subjected to index ischemia (II) induced by 25 min global ischemia and 35 min reperfusion. In diazoxide- treated hearts, diazoxide (50 micromol/l) was applied 15 min before II. The levels and activation of specific proteins were determined using specific antibodies, activities of matrix metalloproteinases by zymography using gelatin as a substrate. The ultrastructure of mitochondria was investigated by electron microscopy of ultrathin sections of mitochondrial fractions embedded in Epon812. In rat hearts pretreated with diazoxide we found better recovery of contractile function after II. Electron microscopy studies revealed that application of diazoxide was connected with better preservation of mitochondrial integrity at basal conditions and after II in comparison to control hearts. Ischemia induced activation of caspase-3 as well as decrease of mitochondria-associated Bcl-2 levels but diazoxide treatment did not significantly influence these changes. On the other hand, diazoxide pretreatment reduced the cytosolic levels of pro-apoptotic Bax protein. Western blot analysis revealed that application of diazoxide increased activation of both ERK-1 and ERK-2 as compared with control hearts. ERK-2 activities were also higher in diazoxide-treated hearts after II when compared to control hearts. Moreover, application of diazoxide inhibited the activities of tissue matrix metalloproteinases (MMP-2). The results suggest that the cardioprotection mediated by diazoxide in rats is associated with preservation of mitochondrial integrity and function. The effect of diazoxide on ERK pathway points to the involvement of this signaling cascade in diazoxide-mediated adaptive responses of myocardium to ischemia.  相似文献   

19.
The objective of this study was to detect ATP-sensitive K+ uptake in rat uterine smooth muscle mitochondria and to determine possible effects of its activation on mitochondrial physiology. By means of fluorescent technique with usage of K+-sensitive fluorescent probe PBFI (potassium-binding benzofuran isophthalate) we showed that accumulation of K ions in isolated mitochondria from rat myometrium is sensitive to effectors of KATP-channel (ATP-sensitive K+-channel) – ATP, diazoxide, glibenclamide and 5HD (5-hydroxydecanoate). Our data demonstrates that K+ uptake in isolated myometrium mitochondria results in a slight decrease in membrane potential, enhancement of generation of ROS (reactive oxygen species) and mitochondrial swelling. Particularly, the addition of ATP into incubation medium led to a decrease in mitochondrial swelling and ROS production, and an increase in membrane potential. These effects were eliminated by diazoxide. If blockers of KATP-channel were added along with diazoxide, the effects of diazoxide were removed. So, we postulate the existence of KATP-channels in rat uterus mitochondria and assume that their functioning may regulate physiological conditions of mitochondria, such as matrix volume, ROS generation and polarization of mitochondrial membrane.  相似文献   

20.

Background

Reactive oxygen species (ROS) are among the main determinants of cellular damage during ischemia and reperfusion. There is also ample evidence that mitochondrial ROS production is involved in signaling during ischemic and pharmacological preconditioning. In a previous study we analyzed the mitochondrial effects of the efficient preconditioning drug diazoxide and found that it increased the mitochondrial oxidation of the ROS-sensitive fluorescent dye 2′,7′-dichlorodihydrofluorescein (H2DCF) but had no direct impact on the H2O2 production of submitochondrial particles (SMP) or intact rat heart mitochondria (RHM).

Methods

H2O2 generation of bovine SMP and tightly coupled RHM was monitored under different conditions using the amplex red/horseradish peroxidase assay in response to diazoxide and a number of inhibitors.

Results

We show that diazoxide reduces ROS production by mitochondrial complex I under conditions of reverse electron transfer in tightly coupled RHM, but stimulates mitochondrial ROS production at the Qo site of complex III under conditions of oxidant-induced reduction; this stimulation is greatly enhanced by uncoupling. These opposing effects can both be explained by inhibition of complex II by diazoxide. 5-Hydroxydecanoate had no effect, and the results were essentially identical in the presence of Na+ or K+ excluding a role for putative mitochondrial KATP-channels.

General significance

A straightforward rationale is presented to mechanistically explain the ambivalent effects of diazoxide reported in the literature. Depending on the metabolic state and the membrane potential of mitochondria, diazoxide-mediated inhibition of complex II promotes transient generation of signaling ROS at complex III (during preconditioning) or attenuates the production of deleterious ROS at complex I (during ischemia and reperfusion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号