首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adeno-associated viral (AAV) vectors are used for in vivo gene transfer in a number of preclinical models of genetic diseases (including large-animal models) and are currently being tested in clinical trials for treatment of hemophilia B and cystic fibrosis. Protocols for production of AAV vectors in a helper virus-free system are available and are based on transient transfection of HEK-293 cells with multiple plasmids. Scale-up of vector production has been labor intensive and inefficient because of a lack of larger culture vessels suitable for growth of adherent cells, large-scale transfection, and vector production. Here we report efficient production of AAV vector in roller bottles, which represents a 10-fold scale-up from the conventional flask or plate method. Optimized production yielded greater than 10(13) vector genomes per bottle and was as cost effective as published protocols using plates. Successful vector production by this method was dependent on optimization of transfection by calcium phosphate precipitation, of monitoring of cell growth (by measurement of glucose consumption), of cell culture conditions, and CO2/air exchange with the culture vessel.  相似文献   

2.
The ability of adeno-associated virus serotype 1 to 8 (AAV1 to AAV8) vectors expressing the human immunodeficiency virus type 1 (HIV-1) Env gp160 (AAV-HIV) to induce an immune response was evaluated in BALB/c mice. The AAV5 vector showed a higher tropism for both mouse and human dendritic cells (DCs) than did the AAV2 vector, whereas other AAV serotype vectors transduced DCs only poorly. AAV1, AAV5, AAV7, and AAV8 were more highly expressed in muscle cells than AAV2. An immunogenicity study of AAV serotypes indicates that AAV1, AAV5, AAV7, and AAV8 vectors expressing the Env gp160 gene induced higher HIV-specific humoral and cell-mediated immune responses than the AAV2 vector did, with the AAV5 vector producing the best responses. Furthermore, mice injected with DCs that had been transduced ex vivo with an AAV5 vector expressing the gp160 gene elicited higher HIV-specific cell-mediated immune responses than did DCs transduced with AAV1 and AAV2 vectors. We also found that AAV vectors produced by HEK293 cells and insect cells elicit similar levels of antigen-specific immune responses. These results demonstrate that the immunogenicity of AAV vectors depends on their tropism for both antigen-presenting cells (such as DCs) and non-antigen-presenting cells (such as muscular cells) and that AAV5 is a better vector than other AAV serotypes. These results may aid in the development of AAV-based vaccine and gene therapy.  相似文献   

3.
Scalable and efficient production of high-quality recombinant adeno-associated virus (rAAV) for gene therapy remains a challenge despite recent clinical successes. We developed a new strategy for scalable and efficient rAAV production by sequestering the AAV helper genes and the rAAV vector DNA in two different subcellular compartments, made possible by using cytoplasmic vaccinia virus as a carrier for the AAV helper genes. For the first time, the contamination of replication-competent AAV particles (rcAAV) can be completely eliminated in theory by avoiding ubiquitous nonhomologous recombination. Vector DNA can be integrated into the host genomes or delivered by a nuclear targeting vector such as adenovirus. In suspension HeLa cells, the achieved vector yield per cell is similar to that from traditional triple-plasmid transfection method. The rcAAV contamination was undetectable at the limit of our assay. Furthermore, this new concept can be used not only for production of rAAV, but also for other DNA vectors.  相似文献   

4.
Human Embryonic Kidney 293 (HEK293) cells were adapted into a serum-free suspension medium through steps of gradual serum weaning for the production of adenoviral (AdV) gene therapy vectors. The presence of sodium heparin in the medium formulation reduced cell clumping dramatically in suspension culture. The adapted cells were ready to grow either in serum-containing medium as an attached culture or in serum-free medium in suspension culture. A scalable production process was developed in shake flasks and was then evaluated in stirred tank bioreactors. This process includes a growth phase in batch-mode followed by a production phase involving medium perfusion and supplementation. Fortification with calcium chloride post viral inoculation resulted in an increase in virus production by at least one fold. Addition of stimulating agents such as sodium butyrate, N-acetyl-L-cysteine (NAC), dimethyl sulfoxide(DMSO), or ethyl alcohol post infection was shown to further improve virus production in a dose-dependent manner. The serum-free suspension process described here should be suitable for the manufacturing of other E1-deleted AdV vectors and could potentially be used for the production of recombinant proteins by HEK293 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The supercoiled circular (SC) topology form of plasmid DNA has been regarded to be advantageous over open circular or linearized analogue in transfection and expression efficiency, and therefore are largely demanded in the biopharmaceutical manufacturing. However, production of high-purity SC plasmid DNA would result in high manufacturing cost. The effect of SC proportion in plasmid DNA on the quality of packaged lentiviral vectors has never been reported. In this study, we established an efficient system for production of high-titer lentiviral vectors using suspension HEK293SF cells in serum-free media, and the lentiviral titer was not associated with the proportion of SC plasmid DNA. Plasmids DNA with different proportion of SC, open-circular, and linearized forms were prepared using the thermal denaturation method, and were transfected to adherent HEK293T or suspension HEK293SF cells for packaging of lentiviral vectors. The titer of lentiviral vectors from HEK293T cells, but not from HEK293SF cells, was significantly impaired when the proportion of SC plasmid DNA decreased from 60–80% to 30–40%. Further decrease of SC plasmid proportion to 3% led to a dramatic reduction of lentiviral titer no matter the packaging cell line was. However, lentiviral vectors from HEK293SF cells still showed a high titer even when the proportion of SC plasmid DNA was 3%. This study demonstrated that extremely high proportion of SC plasmid DNA was not required for packaging of high-titer lentiviral vector in HEK293SF cells, at least under our manufacturing process.  相似文献   

6.
The adeno-associated virus (AAV) vector system is based on nonpathogenic and helper-virus-dependent parvoviruses. The vector system offers safe, efficient, and long-term in vivo gene transfer in numerous tissues. Clinical trials using AAV vectors have demonstrated vector safety as well as efficiency. The increasing interest in the use of AAV for clinical studies demands large quantities of vectors and hence a need for improvement in vector production. The commonly used transient-transfection method, although versatile and free of adenovirus (Ad), is not cost-effective for large-scale production. While the wild-type-Ad-dependent AAV producer cell lines seem to be cost-effective, this method faces the problem of wild-type Ad contamination. To overcome these shortcomings, we have explored the feasibility of creating inducible AAV packaging cell lines that require neither transfection nor helper virus infection. As a first step toward that goal, we have created a cell line containing highly inducible Ad E1A and E1B genes, which are essential for AAV production. Subsequently, the AAV Rep and Cap genes and an AAV vector containing a green fluorescent protein (GFP) reporter gene were stably introduced into the E1A-E1B cell line, generating inducible AAV-GFP packaging cell lines. Upon induction of E1A and E1B genes and infection with replication-defective Ad with E1A, E1B, and E3 deleted, the packaging cells yielded high-titer AAV-GFP vectors. Finally, the E2, E4, and VA genes of Ad, under the control of their endogenous promoters, were also introduced into these cells. A few producer cell lines were obtained, which could produce AAV-GFP vectors upon simple drug induction. Although future improvement is necessary to increase the stability and vector yield of the cells, our study has nonetheless demonstrated the feasibility of generating helper-virus-free inducible AAV producer cell lines.  相似文献   

7.
Manufacturing practices for recombinant adeno‐associated viruses (AAV) have improved in the last decade through the development of new platforms in conjunction with better production and purification methods. In this review, we discuss the advantages and limitations of the most popular systems and methods employed with mammalian cell platforms. Methods and systems such as transient transfection, packaging and producer cells and adenovirus and herpes simplex virus are described. In terms of best production yields, they are comparable with about 104–105 vector genomes produced per cell but transient transfection of HEK293 cells is by far the most commonly used. For small‐scale productions, AAV can be directly purified from the producing cell lysate by ultracentrifugation on a CsCl or iodixanol‐step gradient whereas large‐scale purification requires a combination of multiple steps. Micro/macrofiltration (i.e. including tangential flow filtration and/or dead‐end filtration) and chromatography based‐methods are used for large‐scale purification. Purified AAV products must then be quantified and characterized to ensure quality. Recent purification methods and current analytical techniques are reviewed here. Finally, AAV technology is very promising, but manufacturing improvements are still required to meet the needs of affordable, safe and effective AAV vectors essential for licensing of gene therapy clinical protocols.  相似文献   

8.
We have developed an efficient, reproducible, and scaleable cell culture process for a recombinant adenoviral vector expressing therapeutic transgenes for clinical trials. HEK 293 cells – which support the propagation of E1 deficient adenovirus – were first adapted to serum free media and suspension growth. Subsequent studies focused on the infection, virus production and harvest from suspension culture bioreactors. Future studies are planned to address the kinetics of adenovirus production in HEK 293 as well as in other cell lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Hot topics in adeno-associated virus as a gene transfer vector   总被引:4,自引:0,他引:4  
Adeno-associated virus (AAV) is a promising viral vector in treating many kinds of hereditary diseases. The broad host range, low level of immune response, and longevity of gene expression observed with this vector have enabled the initiation of a number of clinical trials using this gene delivery system. Another potential benefit of AAV vectors is their ability to integrate site-specifically in the presence of Rep proteins. However, this virus is not well characterized. To obtain high level, persistent expression of the foreign gene, some problems should be solved. In this article, we will describe the advances in some fields of recombinant AAV technology that overcome certain limitations of the vector as a gene delivery system, such as the transduction efficiency, the production, the package capacity, and elimination of immune responses, as well as the applications involving these recombinant vectors for the treatment of some diseases.  相似文献   

10.
Viral vectors for gene therapy, such as recombinant adeno-associated viruses, are produced in human embryonic kidney (HEK) 293 cells. However, the presence of the SV40 T-antigen-encoding CDS SV40GP6 and SV40GP7 in the HEK293T genome raises safety issues when these cells are used in manufacturing for clinical purposes. We developed a new T-antigen-negative HEK cell line from ExcellGene's proprietary HEKExpress,® using the CRISPR-Cas9 strategy. We obtained a high number of clonally-derived cell populations and all of them were demonstrated T-antigen negative. Stability study and AAV production evaluation showed that the deletion of the T-antigen-encoding locus did not impact neither cell growth nor viability nor productivity. The resulting CMC-compliant cell line, named HEKzeroT,® is able to produce high AAV titers, from small to large scale.  相似文献   

11.
Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 10(13) rAAV particles and, more importantly, up to 10(11) infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor.  相似文献   

12.
BACKGROUND: One of the major limitations to the use of adeno-associated virus (AAV) vectors for gene therapy has been the difficulty in producing enough vector to supply a clinical trial. More than 20 000 roller bottles may be required to generate AAV by the traditional transient transfection process to treat 50 patients. A scalable AAV producer cell line grown in serum-free media will meet the needs for the manufacture of AAV gene therapeutics. METHODS: A packaging cell line was generated by introducing the AAV rep and cap genes into A549 cells. From this packaging cell line, a number of producer cell lines were generated by infecting the packaging cell with the appropriate AAV vector. Producer cell lines were then adapted to serum-free suspension conditions for growth in bioreactors. RESULTS: We report here the development of six AAV producer cell lines that generate > 10(4) particles/cell. The rAAV vector preparations from these cell lines have physical and functional characteristics similar to rAAV vectors prepared by transient transfection. To enable large-scale production, producer cell lines were adapted to serum-free suspension and we demonstrate production of AAV at the 15 L scale. In addition, vector preparations from these cell lines were shown to be free of wild-type AAV. CONCLUSIONS: AAV producer cell lines can be readily scaled to meet the needs of clinical trials. One 500 L bioreactor of these producer cells can produce the equivalent of 2500 high capacity roller bottles or 25 000 T-175 tissue culture flasks.  相似文献   

13.
14.
Adeno-associated viral vectors for gene transfer and gene therapy.   总被引:11,自引:0,他引:11  
Adeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression in vivo without immune response or toxicity. Over the past few years, many applications of rAAVs as therapeutic agents have demonstrated the utility of this vector system for long-lasting genetic modification and gene therapy in preclinical models of human disease. New production methods have increased rAAV vector titers and eliminated contamination by adenovirus. In addition, vectors for regulatable gene expression and vectors retargeted to different cells have been engineered. These advancements are expected to accelerate and facilitate further animal model studies, providing validation for use of rAAVs in human clinical trials.  相似文献   

15.
We previously described use of the human parvovirus, adeno-associated virus (AAV), as a vector for transient expression in mammalian cells of the gene for chloramphenicol acetyltransferase (CAT). In the AAV vector, pTS1, the CAT gene is expressed under the control of the major AAV promoter p40. This promoter is embedded within the carboxyl-terminal region of an open reading frame (orf-1) which codes for a protein (rep) required for AAV DNA replication. We show here that the rep product has additional trans-acting properties to regulate gene expression. First, deletion or frame-shift mutations in orf-1, which occurred far upstream of p40, increased expression of CAT in human 293 (adenovirus-transformed) cells. This increased CAT expression was abolished when such mutant AAV vectors were transfected into 293 cells together with a second AAV vector which could supply the wild-type AAV rep product in trans. Thus, an AAV rep gene product was a negative regulator, in trans, of expression of CAT in uninfected 293 cells. In adenovirus-infected 293 cells, the function of the AAV rep product was more complex, but in some cases, it appeared to be a trans activator of the expression from p40. In HeLa cells, only trans activation by rep was seen in the absence or presence of adenovirus. Neither activation nor repression by the rep product required replication per se of the AAV vector DNA. Thus, trans-acting negative or positive regulation of gene expression by the AAV rep gene is modulated by factors in the host cell and by the helper adenovirus.  相似文献   

16.
Adeno-associated virus (AAV) vectors are associated with relatively mild host immune responses in vivo. Although AAV induces very weak innate immune responses, neutralizing antibodies against the vector capsid and transgene still occur. To understand further the basis of the antiviral immune response to AAV vectors, studies were performed to characterize AAV interactions with macrophages. Primary mouse macrophages and human THP-1 cells transduced in vitro using an AAV serotype 2 (AAV2) vector encoding green fluorescent protein did not result in measurable transgene expression. An assessment of internalized vector genomes showed that AAV2 vector uptake was enhanced in the presence of normal but not heat-inactivated or C3-depleted mouse/human serum. Enhanced uptake in the presence of serum coincided with increased macrophage activation as determined by the expression of NF-κB-dependent genes such as macrophage inflammatory protein 2 (MIP-2), interleukin-1β (IL-1β), IL-8, and MIP-1β. AAV vector serotypes 1 and 8 also activated human and mouse macrophages in a serum-dependent manner. Immunoprecipitation studies demonstrated the binding of iC3b complement protein to the AAV2 capsid in human serum. AAV2 did not activate the alternative pathway of the complement cascade and lacked cofactor activity for factor I-mediated degradation of C3b to iC3b. Instead, our results suggest that the AAV capsid also binds complement regulatory protein factor H. In vivo, complement receptor 1/2- and C3-deficient mice displayed impaired humoral immunity against AAV2 vectors, with a delay in antibody development and significantly lower neutralizing antibody titers. These results show that the complement system is an essential component of the host immune response to AAV.  相似文献   

17.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

18.
Recombinant retroviruses are now an established tool for gene delivery. Presently they are mainly produced using adherent cells. However, due to the restrictive nature of adherent cell culture, this mode of production is hampered by low cell-specific productivity and small production units. The large-scale production of retroviral vectors could benefit from the adaptation of retrovirus packaging cell lines to suspension culture. Here, we describe the ability of a 293 packaging cell line to produce retroviral vectors in suspension culture at high titer. Adherent 293GPG cells, producing a Moloney Murine Leukemia Virus (MoMLV) retrovirus vector pseudotyped with the vesicular stomatitis virus G (VSVG) envelope protein and expressing a TK-GFP fusion protein, were adapted to suspension culture in calcium-free DMEM. At a cell density similar to adherent cell culture, the suspension culture produced retroviral vector consistently in the range of 1 x 10(7) infectious viral particles/mL (IVP/mL), with a specific productivity threefold higher than adherent culture. Furthermore, at the same medium replacement frequency, the suspension producer cells could be cultured at higher density than their adherent counterparts, which resulted in virus titer of 3-4 x 10(7) IVP/mL at 11.0 x 10(6) cells/mL. This corresponds to a 10-fold increase in viral concentration compared to adherent cells. The capacity to up scale the retroviral vector production was also demonstrated by performing a 2 VVD perfusion culture for 9 days in a 3L Chemap bioreactor. The combination of suspension and perfusion led to a 20-fold increase in maximum virus productivity compared to the adherent culture.  相似文献   

19.
20.
Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZ gene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should impact successful gene delivery in CF patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号