首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To demonstrate the effect that non-linear dose responses have on the appearance of synergy in mixtures of antimicrobials. METHODS AND RESULTS: A mathematical model, which allows the prediction of the efficacy of mixtures of antimicrobials with non-linear dose responses, was produced. The efficacy of antimicrobial mixtures that would be classified as synergistic by time-kill methodology was shown to be a natural consequence of combining antimicrobials with non-linear dose responses. CONCLUSIONS: The effectiveness of admixtures of biocides and other antimicrobials with non-linear dose responses can be predicted. If the dose response (or dilution coefficient) of any biocidal component, in a mixture, is other than one, then the time-kill methodology used to ascertain the existence of synergy in antimicrobial combinations is flawed. SIGNIFICANCE AND IMPACT OF THE STUDY: The kinetic model developed allows the prediction of the efficacy of antimicrobial combinations. Combinations of known antimicrobials, which reduce the time taken to achieve a specified level of microbial inactivation, can be easily assessed once the kinetic profile of each component has been obtained. Most patented cases of antimicrobial synergy have not taken into account the possible effect of non-linear dose responses of the component materials. That much of the earlier literature can now be predicted, suggests that future cases will require more thorough proof of the alleged synergy.  相似文献   

2.
3.
Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling.  相似文献   

4.
Aqueous suspensions of Bacillus subtilis NCTC 8236 spores, surviving 150,000 or 300,000 rad of gamma irradiation under air from a cesium-137 source, exhibited an enhanced rate of inactivation, compared to nonirradiated spores, when heated with different phenolic bactericides. The apparent magnitude of the enhanced inactivation rate, observed from survival curves, increased progressively with the irradiation dose applied and diminished progressively as the severity of heat treatment with 0.2% chlorocresol was increased either by raising the temperature from 70 to 90 C or reducing the pH from 8 to 6. The enhanced inactivation rate was unaffected when the concentration of sodium chloride added to 0.2% chlorocresol was altered from 0.4 to 0.8%. The enhancement effect was also observed when the heat treatment was carried out with 0.5% phenol and 0.3% m-cresol.  相似文献   

5.
Two mineral oils and 12 linear primary alcohols were studied, alone and in combination, to determine their contact toxicity to adult German cockroaches, Blattella germanica (L.) (Dictyoptera: Blattellidae). The more toxic oil, PD23 (LD50 = 1.45 mg per cockroach) was used for combination studies. Alcohols with carbon chain lengths of C3 and C8 through C12 were the most toxic, with LD50 values ranging from 0.3 to 0.6 mg. C1 (methanol) and C14 (1-tetradecanol) were least toxic, with LD50 values of 2.35 and 1.75 mg, respectively. Eight of the 12 combinations of a nonlethal dose of PD23 oil with an LD10 dose of alcohol produced significantly greater mortality than predicted under the assumption of additive effects. A sample of five synergistic oil + alcohol combinations, covering most of the alcohol carbon chain length range over which synergy occurred, was further studied by calculating LD50 values for three fixed mixture ratios (80:20, 50:50, and 20:80) of each combination. Results were analyzed using both graphical techniques (isobole analysis) and by nonlinear regression. At least one, but not necessarily all, of the three fixed ratio combinations of each oil + alcohol pairing indicated synergy. The conclusions drawn from the isobole and regression analyses were consistent.  相似文献   

6.
Summary In this article, we propose a Bayesian approach to dose–response assessment and the assessment of synergy between two combined agents. We consider the case of an in vitro ovarian cancer research study aimed at investigating the antiproliferative activities of four agents, alone and paired, in two human ovarian cancer cell lines. In this article, independent dose–response experiments were repeated three times. Each experiment included replicates at investigated dose levels including control (no drug). We have developed a Bayesian hierarchical nonlinear regression model that accounts for variability between experiments, variability within experiments (i.e., replicates), and variability in the observed responses of the controls. We use Markov chain Monte Carlo to fit the model to the data and carry out posterior inference on quantities of interest (e.g., median inhibitory concentration IC 50 ). In addition, we have developed a method, based on Loewe additivity, that allows one to assess the presence of synergy with honest accounting of uncertainty. Extensive simulation studies show that our proposed approach is more reliable in declaring synergy compared to current standard analyses such as the median‐effect principle/combination index method ( Chou and Talalay, 1984 , Advances in Enzyme Regulation 22, 27–55), which ignore important sources of variability and uncertainty.  相似文献   

7.
A model of antibiotic synergy based on a molecular mechanism of action which blocked sequential steps in a single metabolic pathway was tested. Twenty-five strains each of Pseudomonas, Klebsiella, and Serratia were tested in vitro against three different two drug combinations of vancomycin, carbenicillin, or cephalothin. Synergy was observed when vancomycin was combined with either carbenicillin or cephalothin against isolates of Pseudomonas or Serratia, whereas the combination of carbenicillin and cephalothin did not result in significant synergy against these isolates. The presence of synergy was not related to the sensitivity or resistance of the isolates to the drugs in the combination. Synergy was also observed with all three antibiotic combinations against Klebsiella isolates which may be related to enzyme inactivation by one of the drugs in the combination. These observations support the hypothetical model of antibiotic synergy based on sequential blocking of one biochemical pathway.  相似文献   

8.

Background

Drug combination therapy, which is considered as an alternative to single drug therapy, can potentially reduce resistance and toxicity, and have synergistic efficacy. As drug combination therapies are widely used in the clinic for hypertension, asthma, and AIDS, they have also been proposed for the treatment of cancer. However, it is difficult to select and experimentally evaluate effective combinations because not only is the number of cancer drug combinations extremely large but also the effectiveness of drug combinations varies depending on the genetic variation of cancer patients. A computational approach that prioritizes the best drug combinations considering the genetic information of a cancer patient is necessary to reduce the search space.

Results

We propose an in-silico method for personalized drug combination therapy discovery. We predict the synergy between two drugs and a cell line using genomic information, targets of drugs, and pharmacological information. We calculate and predict the synergy scores of 583 drug combinations for 31 cancer cell lines. For feature dimension reduction, we select the mutations or expression levels of the genes in cancer-related pathways. We also used various machine learning models. Extremely Randomized Trees (ERT), a tree-based ensemble model, achieved the best performance in the synergy score prediction regression task. The correlation coefficient between the synergy scores predicted by ERT and the actual observations is 0.738. To compare with an existing drug combination synergy classification model, we reformulate the problem as a binary classification problem by thresholding the synergy scores. ERT achieved an F1 score of 0.954 when synergy scores of 20 and -20 were used as the threshold, which is 8.7% higher than that obtained by the state-of-the-art baseline model. Moreover, the model correctly predicts the most synergistic combination, from approximately 100 candidate drug combinations, as the top choice for 15 out of the 31 cell lines. For 28 out of the 31 cell lines, the model predicts the most synergistic combination in the top 10 of approximately 100 candidate drug combinations. Finally, we analyze the results, generate synergistic rules using the features, and validate the rules through the literature survey.

Conclusion

Using various types of genomic information of cancer cell lines, targets of drugs, and pharmacological information, a drug combination synergy prediction pipeline is proposed. The pipeline regresses the synergy level between two drugs and a cell line as well as classifies if there exists synergy or antagonism between them. Discovering new drug combinations by our pipeline may improve personalized cancer therapy.
  相似文献   

9.
The longstanding, successful use of herbal drug combinations in traditional medicine makes it necessary to find a rationale for the pharmacological and therapeutic superiority of many of them in comparison to isolated single constituents. This review describes many examples of how modern molecular–biological methods (including new genomic technologies) can enable us to understand the various synergistic mechanisms underlying these effects. Synergistic effects can be produced if the constituents of an extract affect different targets or interact with one another in order to improve the solubility and thereby enhance the bioavailability of one or several substances of an extract. A special synergy effect can occur when antibiotics are combined with an agent that antagonizes bacterial resistance mechanisms. The verification of real synergy effects can be achieved through detailed pharmacological investigations and by means of controlled clinical studies performed in comparison with synthetic reference drugs. All the new ongoing projects aim at the development of a new generation of phytopharmaceuticals which can be used alone or in combination with synthetic drugs or antibiotics. This new generation of phytopharmaceuticals could lend phytotherapy a new legitimacy and enable their use to treat diseases which have hitherto been treated using synthetic drugs alone.  相似文献   

10.
Human diseases may involve cellular signaling networks that contain redundant pathways, so that blocking a single pathway in the system cannot achieve the desired effect. As such, the use of drugs in combination are particularly effective interventions in networked systems. However, common synergy measures are often inadequate to quantify the effect of two different drugs in complex cellular systems. This article proposes a general approach to quantifying the synergy of two drugs in combination. This approach is called strong nonlinear blending. Drugs with different relative potencies, different effect maxima, or situations of potentiation or coalism pose no problem for strong nonlinear blending as a way to assess the increased response benefit to be gained by combining two drugs. This is important as testing drug combinations in complex biological systems are likely to produce a wide variety of possible response surfaces. It is also shown that for monotone increasing (or decreasing) dose response surfaces that strong nonlinear blending is equivalent to improved potency along a ray of constant dose ratio. This is important because fixed dose ratios form the basis for many preclinical and clinical combination drug experiments. Two examples are given involving HIV and cancer chemotherapy combination drug experiments.  相似文献   

11.
Human diseases may involve cellular signaling networks that contain redundant pathways, so that blocking a single pathway in the system cannot achieve the desired effect. As such, the use of drugs in combination are particularly effective interventions in networked systems. However, common synergy measures are often inadequate to quantify the effect of two different drugs in complex cellular systems. This article proposes a general approach to quantifying the synergy of two drugs in combination. This approach is called strong nonlinear blending. Drugs with different relative potencies, different effect maxima, or situations of potentiation or coalism pose no problem for strong nonlinear blending as a way to assess the increased response benefit to be gained by combining two drugs. This is important as testing drug combinations in complex biological systems are likely to produce a wide variety of possible response surfaces. It is also shown that for monotone increasing (or decreasing) dose response surfaces that strong nonlinear blending is equivalent to improved potency along a ray of constant dose ratio. This is important because fixed dose ratios form the basis for many preclinical and clinical combination drug experiments. Two examples are given involving HIV and cancer chemotherapy combination drug experiments.  相似文献   

12.
Synergistic effects of two synthetic adjuvants, dimethyldioctadecylammonium bromide (DDA) and dextran sulfate (DXS) on the humoral response to sheep red blood cells (SRBC) were investigated. Mice received intraperitoneal (ip) injections of adjuvant and antigen simultaneously. The number of plaque-forming cells (PFC) in the spleen were determined 5 days later and circulating anti-SRBC antibodies were measured till 16 weeks after immunization. Although combinations of DDA and DXS were very effective in enhancing the PFC response to both moderate (2 X 10(7] and low (2 X 10(6] doses of SRBC, synergy between the adjuvants was only observed at the low dose of SRBC. Optimal augmentation of the primary response to the low antigen dose was evoked by the combination of the highest dose tested of either adjuvant (1 mumol DDA and 1 nmol DXS) resulting in a 560-fold increase of the number of PFC in the spleen as compared to controls. Even combinations of relatively small amounts of both adjuvants were very effective in augmenting the response to SRBC. Mice receiving half the amounts of both adjuvants with 2 X 10(6) SRBC displayed increased numbers of PFC in the spleen at Day 5 as well as increased titers of total anti-SRBC antibodies at Week 1 and Week 2 and 2-mercaptoethanol-resistant antibodies from Week 4 till Week 16 as compared to the calculated sum of responses in mice which received either DDA (0.05 mumol per mouse) or DXS (0.05 nmol per mouse). The mechanism behind the synergy between these adjuvants is discussed and the possibility of discerning adjuvants on their modes of action is suggested.  相似文献   

13.
The effects of single fungicide applications on Mycosphaerella graminicola (septoria leaf blotch) control and winter wheat yield were evaluated in field trials conducted in central Belgium between 2000 and 2004. Individual applications of 25, 50, 75 and 100% of the manufacturer's recommended dose rates of azoxystrobin and epoxiconazole, and all the combinations of these treatments, were made at GS 39 in 2001 to 2004 and at GS 59 in 2000. Disease assessments were made at growth stage 75, some 7-8 weeks after the last applications. Between 2000 and 2003, no significant difference was observed for disease control between the products when applied alone. With regard to the dose responses, the differences between the recommended dose rates and the 50% reduced dosages were not important. In 2004, azoxystrobin was less effective than epoxiconazole. This was probably the result of strobilurin-resistant isolates of M. graminicola reaching an occurrence of 32% before fungicide application. The combination of different dosages of azoxystrobin and epoxiconazole revealed that there was very little synergy between these products when applied in a single application. The combinations of these products were better than individual applications only when high dosages of both compounds were used.  相似文献   

14.
Frequent and indiscriminate use of existing battery of antibiotics has led to the development of multi drug resistant (MDR) strains of pathogens. As decreasing the concentration of the antibiotic required to treat Salmonellosis might help in combating the development of resistant strains, the present study was designed to assess the synergistic effects, if any, of nisin, in combination with conventional anti-Salmonella antibiotics against Salmonella enterica serovar Typhimurium. Minimum inhibitory concentrations (MICs) of the selected antimicrobial agents were determined by micro and macro broth dilution assays. In-vitro synergy between the agents was evaluated by radial diffusion assay, fractional inhibitory concentration (FIC) index (checkerboard test) and time-kill assay. Scanning electron microscopy (SEM) was also performed to substantiate the effect of the combinations. In-vivo synergistic efficacy of the combinations selected on the basis of in-vitro results was also evaluated in the murine model, in terms of reduction in the number of Salmonellae in liver, spleen and intestine. Nisin-ampicillin and nisin-EDTA combinations were observed to have additive effects, whereas the combinations of nisin-ceftriaxone and nisin-cefotaxime were found to be highly synergistic against serovar Typhimurium as evident by checkerboard test and time-kill assay. SEM results revealed marked changes on the outer membrane of the bacterial cells treated with various combinations. In-vivo synergy was evident from the larger log unit decreases in all the target organs of mice treated with the combinations than in those treated with drugs alone. This study thus highlights that nisin has the potential to act in conjunction with conventional antibiotics at much lower MICs. These observations seem to be significant, as reducing the therapeutic concentrations of antibiotics may be a valuable strategy for avoiding/reducing the development of emerging antibiotic resistance. Value added potential of nisin in the efficacy of conventional antibiotics may thus be exploited not only against Salmonella but against other Gram-negative infections as well.  相似文献   

15.
B lymphocytes require a source of T cell-like help to produce antibody to T cell-dependent antigens. T cell-derived lymphokines and C8-substituted guanine ribonucleosides (such as 8-mercaptoguanosine; 8MGuo) are effective sources of such T cell-like help. Addition of T cell-derived lymphokines to antigen-activated B cells together with 8MGuo results in synergistic B cell differentiation, amplifying the sum of the individual responses twofold to four-fold. Lymphokine activity is required at initiation of culture for optimal synergy with 8MGuo, whereas the nucleoside can be added up to 48 hr after the lymphokines with full synergy. 8MGuo provides a perceived T cell-like differentiation signal to B cells from immunodeficient xid mice, thereby distinguishing a subset of Lyb-5- nucleoside-responsive B cells from those activated by soluble anti-mu followed by B cell stimulatory factor-1, interleukin 1, and B cell differentiation factors, which are Lyb-5+. Moreover, at least a subset of the B cells recruited by the synergistic interaction of lymphokines and nucleoside is distinct from that responsive to 8MGuo + antigen, insofar as Sephadex G-10 nonadherent xid B cells fail to respond to either 8MGuo or lymphokines alone, but do respond to the combination. A distinct subpopulation can also be demonstrated among normal B cells by limiting dilution analysis in which the precursor frequency of antigen-reactive B cells in the presence of lymphokines or nucleoside alone increases substantially when both agents are present together. In concert with the kinetic data, these observations suggest that synergy derives at least in part from the ability of lymphokines to induce one or more elements the absence of which limits the capacity of a distinct B cell subpopulation to respond to 8MGuo.  相似文献   

16.
Ming XY  Wang W  Han JS  Luo F 《生理学报》2005,57(6):696-704
本文旨在研究曲马朵(tramadol,TRA)和二氢埃托啡(dihydroetorphine,DHE)联合用药是否可产生协同镇痛并延缓耐受的发生。TRA(mg,腹腔注射)与DHE(ng,皮下注射)按固定比率给药(1:6.25,1:12.5,1:25,1:50,l:100,1:200),用热辐射甩尾法评价镇痛效应,采用等高线法评估药物的协同作用。在急性耐受实验中,连续6次注射TRA(20mg/kg)、DHE(1000ng/kg)或两药的组合(TRA20mg/kg+DHE250ng/kg)。结果显示:(1)除1mg:6.25ng和1mg:50ng两个比例外,其他所有比例用药均产生显著的协同镇痛效应;(2)TRA与DHE联合用药的疗效在连续给药中持续时间明显延长,提示二者联合使用可延缓耐受。以上结果提示:TRA与DHE在一定剂量比范围内可产生协同镇痛效应,并可推迟耐受的形成。  相似文献   

17.
BACKGROUND: Synthetic oligodeoxynucleotides (ODN) containing immunostimulatory cytosine-guanine phosphate-linked dinucleotide (CpG) motifs are potent systemic and mucosal adjuvants in mice that have synergistic action with numerous other adjuvants, including alum and cholera toxin (CT). Herein, we evaluate CpG ODN with intranasal (IN) delivery of purified hepatitis B surface antigen (HBsAg), relative to and in combination with CT, Escherichia coli heat labile enterotoxin (LT), the B subunit of CT (CTB), and a nontoxic derivative of LT (LTK63). MATERIALS AND METHODS: BALB/c mice were immunized by IN administration of HBsAg, alone or combined with CT, LT, CTB, or LTK63, and/or CpG ODN, or non-CpG control ODN. In addition, the effect of low-or high-volume administration was assessed, in order to target upper respiratory or entire respiratory tract, respectively. HBsAg-specific systemic (immunoglobulins: IgG, IgG1, IgG2a in plasma) and mucosal (IgA in fecal, lung, vaginal, saliva, and gut samples) humoral responses, as well as cell-mediated immune responses including T-cell proliferation and cytokines (interleukins: IL-4, IL-5; interferon: IFN-gamma) were evaluated. RESULTS: CpG ODN, CT, and LT augmented anti-HBs titers equally, and more so than did CTB or LTK63. CpG ODN acted synergistically with CT and LT, but not CTB or LTK63 to enhance anti-HBs titers. Nevertheless, CpG ODN induced a more Th1-like response for all combinations, compared with the same formulation without CpG. Strength of induced systemic and mucosal immune responses was better with IN delivery of a large volume. A small volume required multiple administrations and higher doses of antigen and adjuvant for equal results. This suggests that delivery of antigen to the lung and/or diges-tive system is superior to delivery to the nasal cavity. CONCLUSIONS: Our results suggest that the synergy between CpG ODN and native toxins (CT, LT) may depend on their enzymatic activity and that the lack of synergy with nontoxic derivatives (LTB, LTK63) arises, since they do not have enzymatic activity. Because both CT and LT are too toxic for use in humans, it is possible that CpG ODN may be combined with bacterial toxin mutants that retain some enzymatic activity to optimize immune augmentation.  相似文献   

18.
AIMS: Interferon-alpha (IFN-alpha) alone or in combination with ribavirin has been used for the last decade in the treatment of chronic hepatitis C, although the achievement of a sustained virological response (SVR) has not been very satisfactory. The treatment outcome depends on viral genotypes and host genetic polymorphisms in genes involved in the IFN-alpha signaling cascade. In this paper, we investigated the distribution of two variants of the IFNAR1 gene, G17470C and L168V, in two patient groups having received IFN-alpha alone or in combination with ribavirin. METHODS: The analysis was performed using DNA sequencing of the relevant gene fragments. RESULTS AND CONCLUSIONS: This study suggests that when combination therapy with high dose IFN-alpha and ribavirin is administered, HCV genotypes and age rather than the IFNAR1 polymorphisms are the predictors of a sustained response.  相似文献   

19.
Toxicity screening and testing of chemical mixtures for interaction effects is a potentially onerous task due to the sheer volume of combinations that may be of interest. We propose an economical approach for assessing the interaction effects of chemical mixtures that is guided by risk-based considerations. We describe the statistical underpinnings of the approach and use examples from the published literature to illustrate concepts of local versus global mixture assessment. Our approach employs a sequential testing procedure to find the dose combinations that define the dose boundary for a specified acceptable risk level. The first test is conducted for a dose combination consisting of the acceptable doses of each individual chemical in the mixture. The outcome of this first test indicates the dose combination that should be tested next. Continuing in this manner, the boundary of dose combinations for the specified acceptable risk level can be approximated based on measurements for relatively few dose combinations. Dose combinations on one side of the boundary would have responses less than the response associated with the acceptable risk level, and dose combinations on the boundary would be acceptable levels of exposure for the mixture.  相似文献   

20.
AIMS: The effect of combinations of nisin and ethanol on the survival of Listeria monocytogenes was investigated. METHODS AND RESULTS: Killing by nisin was enhanced during simultaneous exposure to ethanol (2-7% v/v). For example, while 10 IU ml(-1) nisin reduced viability by 1 log unit in 20 min, a combination of this antimicrobial peptide and 5% ethanol, reduced numbers of surviving cells by 3 log units. Increasing the concentrations of either ethanol (2-7%) or nisin (10-50 IU ml(-1)) led to increased cell death with synergy being demonstrated for all combinations tested and at a range of temperatures from 5 to 37 degrees C. CONCLUSIONS: Ethanol can act synergistically with nisin to reduce the survival of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: Combinations of ethanol and nisin may be feasible as an effective way of controlling this pathogen in the food processing environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号