首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Mitochondrial distribution and morphology depend on MDM33, a Saccharomyces cerevisiae gene encoding a novel protein of the mitochondrial inner membrane. Cells lacking Mdm33 contain ring-shaped, mostly interconnected mitochondria, which are able to form large hollow spheres. On the ultrastructural level, these aberrant organelles display extremely elongated stretches of outer and inner membranes enclosing a very narrow matrix space. Dilated parts of Delta mdm33 mitochondria contain well-developed cristae. Overexpression of Mdm33 leads to growth arrest, aggregation of mitochondria, and generation of aberrant inner membrane structures, including septa, inner membrane fragments, and loss of inner membrane cristae. The MDM33 gene is required for the formation of net-like mitochondria in mutants lacking components of the outer membrane fission machinery, and mitochondrial fusion is required for the formation of extended ring-like mitochondria in cells lacking the MDM33 gene. The Mdm33 protein assembles into an oligomeric complex in the inner membrane where it performs homotypic protein-protein interactions. Our results indicate that Mdm33 plays a distinct role in the mitochondrial inner membrane to control mitochondrial morphology. We propose that Mdm33 is involved in fission of the mitochondrial inner membrane.  相似文献   

2.
The MDM31 and MDM32 genes are required for normal distribution and morphology of mitochondria in the yeast Saccharomyces cerevisiae. They encode two related proteins located in distinct protein complexes in the mitochondrial inner membrane. Cells lacking Mdm31 and Mdm32 harbor giant spherical mitochondria with highly aberrant internal structure. Mitochondrial DNA (mtDNA) is instable in the mutants, mtDNA nucleoids are disorganized, and their association with Mmm1-containing complexes in the outer membrane is abolished. Mutant mitochondria are largely immotile, resulting in a mitochondrial inheritance defect. Deletion of either one of the MDM31 and MDM32 genes is synthetically lethal with deletion of either one of the MMM1, MMM2, MDM10, and MDM12 genes, which encode outer membrane proteins involved in mitochondrial morphogenesis and mtDNA inheritance. We propose that Mdm31 and Mdm32 cooperate with Mmm1, Mmm2, Mdm10, and Mdm12 in maintenance of mitochondrial morphology and mtDNA.  相似文献   

3.
Previous studies indicate that two proteins, Mmm1p and Mdm10p, are required to link mitochondria to the actin cytoskeleton of yeast and for actin-based control of mitochondrial movement, inheritance and morphology. Both proteins are integral mitochondrial outer membrane proteins. Mmm1p localizes to punctate structures in close proximity to mitochondrial DNA (mtDNA) nucleoids. We found that Mmm1p and Mdm10p exist in a complex with Mdm12p, another integral mitochondrial outer membrane protein required for mitochondrial morphology and inheritance. This interpretation is based on observations that 1) Mdm10p and Mdm12p showed the same localization as Mmm1p; 2) Mdm12p, like Mdm10p and Mmm1p, was required for mitochondrial motility; and 3) all three proteins coimmunoprecipitated with each other. Moreover, Mdm10p localized to mitochondria in the absence of the other subunits. In contrast, deletion of MMM1 resulted in mislocalization of Mdm12p, and deletion of MDM12 caused mislocalization of Mmm1p. Finally, we observed a reciprocal relationship between the Mdm10p/Mdm12p/Mmm1p complex and mtDNA. Deletion of any one of the subunits resulted in loss of mtDNA or defects in mtDNA nucleoid maintenance. Conversely, deletion of mtDNA affected mitochondrial motility: mitochondria in cells without mtDNA move 2-3 times faster than mitochondria in cells with mtDNA. These observations support a model in which the Mdm10p/Mdm12p/Mmm1p complex links the minimum heritable unit of mitochondria (mtDNA and mitochondrial outer and inner membranes) to the cytoskeletal system that drives transfer of that unit from mother to daughter cells.  相似文献   

4.
5.
《The Journal of cell biology》1994,126(6):1361-1373
Yeast cells with the mdm10 mutation possess giant spherical mitochondria and are defective for mitochondrial inheritance. The giant mitochondria display classical features of mitochondrial ultrastructure, yet they appear incapable of movement or division. Genetic analysis indicated that the mutant phenotypes resulted from a single nuclear mutation, and the isolated MDM10 gene restored wild-type mitochondrial distribution and morphology when introduced into mutant cells. MDM10 encodes a protein of 56.2 kD located in the mitochondrial outer membrane. Depletion of Mdm10p from cells led to a condensation of normally extended, tubular mitochondria into giant spheres, and reexpression of the protein resulted in a rapid restoration of normal mitochondrial morphology. These results demonstrate that Mdm10p can control mitochondrial morphology, and that it plays a role in the inheritance of mitochondria.  相似文献   

6.
Phb2p, a homolog of the tumor suppressor protein prohibitin, was identified in a genetic screen for suppressors of the loss of Mdm12p, a mitochondrial outer membrane protein required for normal mitochondrial morphology and inheritance in Saccharomyces cerevisiae. Phb2p and its homolog, prohibitin (Phb1p), were localized to the mitochondrial inner membrane and characterized as integral membrane proteins which depend on each other for their stability. In otherwise wild-type genetic backgrounds, null mutations in PHB1 and PHB2 did not confer any obvious phenotypes. However, loss of function of either PHB1 or PHB2 in cells with mitochondrial DNA deleted led to altered mitochondrial morphology, and phb1 or phb2 mutations were synthetically lethal when combined with a mutation in any of three mitochondrial inheritance components of the mitochondrial outer membrane, Mdm12p, Mdm10p, and Mmm1p. These results provide the first evidence of a role for prohibitin in mitochondrial inheritance and in the regulation of mitochondrial morphology.  相似文献   

7.
Mitochondrial β-barrel proteins fulfill central functions in the outer membrane like metabolite exchange catalyzed by the voltage-dependent anion channel (VDAC) and protein biogenesis by the central components of the preprotein translocase of the outer membrane (Tom40) or of the sorting and assembly machinery (Sam50). The mitochondrial division and morphology protein Mdm10 is another essential outer membrane protein with proposed β-barrel fold, which has so far only been found in Fungi. Mdm10 is part of the endoplasmic reticulum mitochondria encounter structure (ERMES), which tethers the ER to mitochondria and associates with the SAM complex. In here, we provide evidence that Mdm10 phylogenetically belongs to the VDAC/Tom40 superfamily. Contrary to Tom40 and VDAC, Mdm10 exposes long loops towards both sides of the membrane. Analyses of single loop deletion mutants of Mdm10 in the yeast Saccharomyces cerevisiae reveal that the loops are dispensable for Mdm10 function. Sequences similar to fungal Mdm10 can be found in species from Excavates to Fungi, but neither in Metazoa nor in plants. Strikingly, the presence of Mdm10 coincides with the appearance of the other ERMES components. Mdm10's presence in both unikonts and bikonts indicates an introduction at an early time point in eukaryotic evolution.  相似文献   

8.
9.
Endoplasmic reticulum–mitochondria contact sites have been a subject of increasing scientific interest since the discovery that these structures are disrupted in several pathologies. Due to the emerging data that correlate endoplasmic reticulum–mitochondria contact sites function with known events of the apoptotic program, we aimed to dissect this interplay using our well-established model of acetic acid-induced apoptosis in Saccharomyces cerevisiae. Until recently, the only known tethering complex between ER and mitochondria in this organism was the ER–mitochondria encounter structure (ERMES). Following our results from a screening designed to identify genes whose deletion rendered cells with an altered sensitivity to acetic acid, we hypothesized that the ERMES complex could be involved in cell death mediated by this stressor. Herein we demonstrate that single ablation of the ERMES components Mdm10p, Mdm12p and Mdm34p increases the resistance of S. cerevisiae to acetic acid-induced apoptosis, which is associated with a prominent delay in the appearance of several apoptotic markers. Moreover, abrogation of Mdm10p or Mdm34p abolished cytochrome c release from mitochondria. Since these two proteins are embedded in the mitochondrial outer membrane, we propose that the ERMES complex plays a part in cytochrome c release, a key event of the apoptotic cascade. In all, these findings will aid in targeted therapies for diseases where apoptosis is disrupted, as well as assist in the development of acetic acid-resistant strains for industrial processes.  相似文献   

10.
Transfer of mitochondria to daughter cells during yeast cell division is essential for viable progeny. The actin cytoskeleton is required for this process, potentially as a track to direct mitochondrial movement into the bud. Sedimentation assays reveal two different components required for mitochondria–actin interactions: (1) mitochondrial actin binding protein(s) (mABP), a peripheral mitochondrial outer membrane protein(s) with ATP-sensitive actin binding activity, and (2) a salt-inextractable, presumably integral, membrane protein(s) required for docking of mABP on the organelle. mABP activity is abolished by treatment of mitochondria with high salt. Addition of either the salt-extracted mitochondrial peripheral membrane proteins (SE), or a protein fraction with ATP-sensitive actin-binding activity isolated from SE, to salt-washed mitochondria restores this activity. mABP docking activity is saturable, resistant to high salt, and inhibited by pre-treatment of salt-washed mitochondria with papain. Two integral mitochondrial outer membrane proteins, Mmm1p (Burgess, S.M., M. Delannoy, and R.E. Jensen. 1994. J.Cell Biol. 126:1375–1391) and Mdm10p, (Sogo, L.F., and M.P. Yaffe. 1994. J.Cell Biol. 126:1361– 1373) are required for these actin–mitochondria interactions. Mitochondria isolated from an mmm1-1 temperature-sensitive mutant or from an mdm10 deletion mutant show no mABP activity and no mABP docking activity. Consistent with this, mitochondrial motility in vivo in mmm1-1 and mdm10Δ mutants appears to be actin independent. Depolymerization of F-actin using latrunculin-A results in loss of long-distance, linear movement and a fivefold decrease in the velocity of mitochondrial movement. Mitochondrial motility in mmm1-1 and mdm10Δ mutants is indistinguishable from that in latrunculin-A–treated wild-type cells. We propose that Mmm1p and Mdm10p are required for docking of mABP on the surface of yeast mitochondria and coupling the organelle to the actin cytoskeleton.Mitochondria are indispensable organelles for normal eukaryotic cell function. Since mitochondria cannot be synthesized de novo, these organelles are inherited, i.e., transferred from mother to daughter during cell division. In the yeast Saccharomyces cerevisiae, vegetative cell division occurs by budding, a form of proliferation in which growth is directed toward the developing bud. Previous studies indicate that mitochondria undergo a series of cell cycle–linked motility events during normal inheritance in yeast (Simon et al., 1997). These are: (a) polarization of mitochondria towards the site of bud emergence in G1 phase; (b) linear, polarized movement of mitochondria from mother cells to developing buds in S phase; (c) immobilization of newly inherited mitochondria in the bud tip during S and G2 phases; and (d) release of immobilized mitochondria from the bud tip during M phase.There is mounting evidence that the actin cytoskeleton controls mitochondrial morphology and inheritance during vegetative yeast cell growth. The two major actin structures of yeast observed by light microscopy are patches and cables. Actin cables are bundles of actin filaments that extend from the mother into the bud. Mitochondria colocalize with these actin cables (Drubin et al., 1993; Lazzarino et al., 1994). Moreover, mutations such as deletion of the tropomyosin I gene, TPM1, or the mitochondrial distribution and morphology gene, MDM20, which selectively destabilize actin cables, result in the loss of polarized mitochondrial movement and reduce transfer of mitochondria into buds (Herman et al., 1997; Simon et al., 1997). Together, these studies indicate that normal mitochondrial inheritance in yeast requires association of mitochondria with actin cables.Cell-free studies reveal a possible mechanism underlying actin control of mitochondrial inheritance. Sedimentation assays document binding of mitochondria to the lateral surface of F-actin. This mitochondrial actin-binding activity is ATP-sensitive, saturable, reversible, and mediated by protein(s) on the mitochondrial surface (Lazzarino et al., 1994). In addition, ATP-driven, actin-dependent motor activity has been identified on the surface of mitochondria (Simon et al., 1995). These observations support a model of mitochondrial inheritance whereby mitochondria use an actin-dependent motor to drive their movement from mother to daughter cells along actin cable tracks.Yeast genetic screens have revealed several genes, collectively referred to as mdm (mitochondrial distribution and morphology) and mmm (maintenance of mitochondrial morphology), which are required for mitochondrial inheritance (McConnell et al., 1990; Burgess et al., 1994; Sogo and Yaffe, 1994). We have focused on two of these genes: MDM10 and MMM1. Deletion of MDM10 leads to the development of giant spherical mitochondria, presumably by the collapse of elongated mitochondria into a spherical mass (Sogo and Yaffe, 1994). Deletion of MMM1 (Burgess et al., 1994) produces a similar phenotype. In both mutants, the fraction of buds without mitochondria is high, indicating defective mitochondrial inheritance. The proteins encoded by these genes, Mdm10p and Mmm1p, appear to be integral membrane proteins in the mitochondrial outer membrane. Here, we report tests of the hypothesis that Mmm1p and Mdm10p are required to link mitochondria to the cytoskeleton.  相似文献   

11.
In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.  相似文献   

12.
The mitochondrion is a dynamic membranous network whose morphology is conditioned by the equilibrium between ongoing fusion and fission of mitochondrial membranes. In the budding yeast, Saccharomyces cerevisiae, the transmembrane GTPase Fzo1p controls fusion of mitochondrial outer membranes. Deletion or overexpression of Fzo1p have both been shown to alter the mitochondrial fusion process indicating that maintenance of steady-state levels of Fzo1p are required for efficient mitochondrial fusion. Cellular levels of Fzo1p are regulated through degradation of Fzo1p by the F-box protein Mdm30p. How Mdm30p promotes degradation of Fzo1p is currently unknown. We have now determined that during vegetative growth Mdm30p mediates ubiquitylation of Fzo1p and that degradation of Fzo1p is an ubiquitin-proteasome-dependent process. In vivo, Mdm30p associates through its F-box motif with other core components of Skp1-Cullin-F-box (SCF) ubiquitin ligases. We show that the resulting SCF(Mdm30p) ligase promotes ubiquitylation of Fzo1p at mitochondria and its subsequent degradation by the 26S proteasome. These results provide the first demonstration that a cytosolic ubiquitin ligase targets a critical regulatory molecule at the mitochondrial outer membrane. This study provides a framework for developing an understanding of the function of Mdm30p-mediated Fzo1p degradation in the multistep process of mitochondrial fusion.  相似文献   

13.
The Mdm10, Mdm12, and Mmm1 proteins have been implicated in several mitochondrial functions including mitochondrial distribution and morphology, assembly of β-barrel proteins such as Tom40 and porin, association of mitochondria and endoplasmic reticulum, and maintaining lipid composition of mitochondrial membranes. Here we show that loss of any of these three proteins in Neurospora crassa results in the formation of large mitochondrial tubules and reduces the assembly of porin and Tom40 into the outer membrane. We have also investigated the relationship of Mdm10 and Tom7 in the biogenesis of β-barrel proteins. Previous work showed that mitochondria lacking Tom7 assemble Tom40 more efficiently, and porin less efficiently, than wild-type mitochondria. Analysis of mdm10 and tom7 single and double mutants, has demonstrated that the effects of the two mutations are additive. Loss of Tom7 partially compensates for the decrease in Tom40 assembly resulting from loss of Mdm10, whereas porin assembly is more severely reduced in the double mutant than in either single mutant. The additive effects observed in the double mutant suggest that different steps in β-barrel assembly are affected in the individual mutants. Many aspects of Tom7 and Mdm10 function in N. crassa are different from those of their homologues in Saccharomyces cerevisiae.  相似文献   

14.
The division of mitochondrial membranes is a complex process mediated by the dynamin-related protein Dnm1 in yeast, acting in concert with several cofactors. We have identified Mdm36 as a mitochondria-associated protein required for efficient mitochondrial division. Δmdm36 mutants contain highly interconnected mitochondrial networks that strikingly resemble known fission mutants. Furthermore, mitochondrial fission induced by depolymerization of the actin cytoskeleton is blocked in Δmdm36 mutants, and the number of Dnm1 clusters on mitochondrial tips is reduced. Double mutant analyses indicate that Mdm36 acts antagonistically to fusion-promoting components, such as Fzo1 and Mdm30. The cell cortex-associated protein Num1 was shown previously to interact with Dnm1 and promote mitochondrial fission. We observed that mitochondria are highly motile and that their localization is not restricted to the cell periphery in Δmdm36 and Δnum1 mutants. Intriguingly, colocalization of Num1 and Dnm1 is abolished in the absence of Mdm36. These data suggest that Mdm36 is required for mitochondrial division by facilitating the formation of protein complexes containing Dnm1 and Num1 at the cell cortex. We propose a model that Mdm36-dependent formation of cell cortex anchors is required for the generation of tension on mitochondrial membranes to promote mitochondrial fission by Dnm1.  相似文献   

15.
Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remains impossible because mitochondrial transformation is still to be achieved in higher eukaryotes. Along this line, it has been shown that isolated plant and mammalian mitochondria are naturally competent for importing linear DNA. However, it has proven difficult to understand how such large polyanions cross the mitochondrial membranes. The genetic tractability of Saccharomyces cerevisae could be a powerful tool to unravel this molecular mechanism. Here we show that isolated S. cerevisiae mitochondria can import linear DNA in a process sharing similar characteristics to plant and mammalian mitochondria. Based on biochemical data, translocation through the outer membrane is believed to be mediated by voltage-dependent anion channel (VDAC) isoforms in higher eukaryotes. Both confirming this hypothesis and validating the yeast model, we illustrate that mitochondria from S. cerevisiae strains deleted for the VDAC-1 or VDAC-2 gene are severely compromised in DNA import. The prospect is now open to screen further mutant yeast strains to identify the elusive inner membrane DNA transporter.  相似文献   

16.
Yeast Dnm1p is a soluble, dynamin-related GTPase that assembles on the outer mitochondrial membrane at sites where organelle division occurs. Although these Dnm1p-containing complexes are thought to trigger constriction and fission, little is known about their composition and assembly, and molecules required for their membrane recruitment have not been isolated. Using a genetic approach, we identified two new genes in the fission pathway, FIS1 and FIS2. FIS1 encodes a novel, outer mitochondrial membrane protein with its amino terminus exposed to the cytoplasm. Fis1p is the first integral membrane protein shown to participate in a eukaryotic membrane fission event. In a related study (Tieu, Q., and J. Nunnari. 2000. J. Cell Biol. 151:353-365), it was shown that the FIS2 gene product (called Mdv1p) colocalizes with Dnm1p on mitochondria. Genetic and morphological evidence indicate that Fis1p, but not Mdv1p, function is required for the proper assembly and distribution of Dnm1p-containing fission complexes on mitochondrial tubules. We propose that mitochondrial fission in yeast is a multi-step process, and that membrane-bound Fis1p is required for the proper assembly, membrane distribution, and function of Dnm1p-containing complexes during fission.  相似文献   

17.
The endoplasmic reticulum mitochondria encounter structure (ERMES) tethers the ER to mitochondria and contains four structural components: Mmm1, Mdm12, Mdm10, and Mmm2 (Mdm34). The Gem1 protein may play a role in regulating ERMES function. Saccharomyces cerevisiae and Neurospora crassa strains lacking any of Mmm1, Mdm12, or Mdm10 are known to show a variety of phenotypic defects including altered mitochondrial morphology and defects in the assembly of β-barrel proteins into the mitochondrial outer membrane. Here we examine ERMES complex components in N. crassa and show that Mmm1 is an ER membrane protein containing a Cys residue near its N-terminus that is conserved in the class Sordariomycetes. The residue occurs in the ER-lumen domain of the protein and is involved in the formation of disulphide bonds that give rise to Mmm1 dimers. Dimer formation is required for efficient assembly of Tom40 into the TOM complex. However, no effects are seen on porin assembly or mitochondrial morphology. This demonstrates a specificity of function and suggests a direct role for Mmm1 in Tom40 assembly. Mutation of a highly conserved region in the cytosolic domain of Mmm1 results in moderate defects in Tom40 and porin assembly, as well as a slight morphological phenotype. Previous reports have not examined the role of Mmm2 with respect to mitochondrial protein import and assembly. Here we show that absence of Mmm2 affects assembly of β-barrel proteins and that lack of any ERMES structural component results in defects in Tom22 assembly. Loss of N. crassa Gem1 has no effect on the assembly of these proteins but does affect mitochondrial morphology.  相似文献   

18.
Mutations in mitochondrial DNA (mtDNA) have been reported in cancer and are involved in the pathogenesis of many mitochondrial diseases. Uracil-DNA glycosylase, encoded by the UNG1 gene in Saccharomyces cerevisiae, repairs uracil in DNA formed due to deamination of cytosine. Our study demonstrates that inactivation of the UNG1 gene leads to at least a 3-fold increased frequency of mutations in mtDNA compared with the wild-type. Using a Ung1p–green fluorescent protein (GFP) fusion construct, we demonstrate that yeast yUng1–GFP protein localizes to both mitochondria and the nucleus, indicating that Ung1p must contain both a mitochondrial localization signal (MLS) and a nuclear localization signal. Our study reveals that the first 16 amino acids at the N-terminus contain the yUng1p MLS. Deletion of 16 amino acids resulted in the yUng1p–GFP fusion protein being transported to the nucleus. We also investigated the intracellular localization of human hUng1p–GFP in yeast. Our data indicate that hUng1p–GFP predominately localizes to the mitochondria. Further analysis identified the N-terminal 16 amino acids as important for localization of hUng1 protein into the mitochondria. Expression of both yeast and human UNG1 cDNA suppressed the frequency of mitochondrial mutation in UNG1-deficient cells. However, expression of yUNG1 in wild-type cells increased the frequency of mutations in mtDNA, suggesting that elevated expression of Ung1p is mutagenic. An increase in the frequency of mitochondrial mutants was also observed when hUNG1 site-directed mutants (Y147C and Y147S) were expressed in mitochondria. Our study suggests that deamination of cytosine is a frequent event in S.cerevisiae mitochondria and both yeast and human Ung1p repairs deaminated cytosine in mitochondria.  相似文献   

19.
Loss of the MDM38 gene product in yeast mitochondria results in a variety of phenotypic effects including reduced content of respiratory chain complexes, altered mitochondrial morphology and loss of mitochondrial K(+)/H(+) exchange activity resulting in osmotic swelling. By use of doxycycline-regulated shut-off of MDM38 gene expression, we show here that loss of K(+)/H(+) exchange activity and mitochondrial swelling are early events, associated with a reduction in membrane potential and fragmentation of the mitochondrial reticulum. Changes in the pattern of mitochondrially encoded proteins are likely to be secondary to the loss of K(+)/H(+) exchange activity. The use of a novel fluorescent biosensor directed to the mitochondrial matrix revealed that the loss of K(+)/H(+) exchange activity was immediately followed by morphological changes of mitochondria and vacuoles, the close association of these organelles and finally uptake of mitochondrial material by vacuoles. Nigericin, a K(+)/H(+) ionophore, fully prevented these effects of Mdm38p depletion. We conclude that osmotic swelling of mitochondria triggers selective mitochondrial autophagy or mitophagy.  相似文献   

20.
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in alpha-factor-arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号