首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
NHP6A is a chromatin-associated protein from Saccharomyces cerevisiae belonging to the HMG1/2 family of non-specific DNA binding proteins. NHP6A has only one HMG DNA binding domain and forms relatively stable complexes with DNA. We have determined the solution structure of NHP6A and constructed an NMR-based model structure of the DNA complex. The free NHP6A folds into an L-shaped three alpha-helix structure, and contains an unstructured 17 amino acid basic tail N-terminal to the HMG box. Intermolecular NOEs assigned between NHP6A and a 15 bp 13C,15N-labeled DNA duplex containing the SRY recognition sequence have positioned the NHP6A HMG domain onto the minor groove of the DNA at a site that is shifted by 1 bp and in reverse orientation from that found in the SRY-DNA complex. In the model structure of the NHP6A-DNA complex, the N-terminal basic tail is wrapped around the major groove in a manner mimicking the C-terminal tail of LEF1. The DNA in the complex is severely distorted and contains two adjacent kinks where side chains of methionine and phenylalanine that are important for bending are inserted. The NHP6A-DNA model structure provides insight into how this class of architectural DNA binding proteins may select preferential binding sites.  相似文献   

2.
Skoko D  Wong B  Johnson RC  Marko JF 《Biochemistry》2004,43(43):13867-13874
The mechanical response generated by binding of the nonspecific DNA-bending proteins HMGB1, NHP6A, and HU to single tethered 48.5 kb lambda-DNA molecules is investigated using DNA micromanipulation. As protein concentration is increased, the force needed to extend the DNA molecule increases, due to its compaction by protein-generated bending. Most significantly, we find that for each of HMGB1, NHP6A, and HU there is a well-defined protein concentration, not far above the binding threshold, above which the proteins do not spontaneously dissociate. In this regime, the amount of protein bound to the DNA, as assayed by the degree to which the DNA is compacted, is unperturbed either by replacing the surrounding protein solution with protein-free buffer or by straightening of the molecule by applied force. Thus, the stability of the protein-DNA complexes formed is dependent on the protein concentration during the binding. HU is distinguished by a switch to a DNA-stiffening function at the protein concentration where the formation of highly stable complexes occurs. Finally, introduction of competitor DNA fragments into the surrounding solution disassembles the stable DNA complexes with HMGB1, NHP6A, and HU within seconds. Since spontaneous dissociation of protein does not occur on a time scale of hours, we conclude that this rapid protein exchange in the presence of competitor DNA must occur only via "direct" DNA-DNA contact. We therefore observe that protein transport along DNA by direct transfers occurs even for proteins such as NHP6A and HU that have only one DNA-binding domain.  相似文献   

3.
NHP6A is a non-sequence-specific DNA-binding protein from Saccharomyces cerevisiae which belongs to the HMGB protein family. Previously, we have solved the structure of NHP6A in the absence of DNA and modeled its interaction with DNA. Here, we present the refined solution structures of the NHP6A-DNA complex as well as the free 15bp DNA. Both the free and bound forms of the protein adopt the typical L-shaped HMGB domain fold. The DNA in the complex undergoes significant structural rearrangement from its free form while the protein shows smaller but significant conformational changes in the complex. Structural and mutational analysis as well as comparison of the complex with the free DNA provides insight into the factors that contribute to binding site selection and DNA deformations in the complex. Further insight into the amino acid determinants of DNA binding by HMGB domain proteins is given by a correlation study of NHP6A and 32 other HMGB domains belonging to both the DNA-sequence-specific and non-sequence-specific families of HMGB proteins. The resulting correlations can be rationalized by comparison of solved structures of HMGB proteins.  相似文献   

4.
A diverse group of DNA-binding regulatory proteins share a common structural domain which is homologous to the sequence of a highly conserved and abundant chromosomal protein, HMG-1. Proteins containing this HMG-1 box regulate various cellular functions involving DNA binding, suggesting that the target DNA sequences share a common structural element. Members of this protein family exhibit a dual DNA-binding specificity: each recognizes a unique sequence as well as a common DNA conformation. The highly conserved HMG-1/-2 proteins may modulate the binding of other HMG-1 box proteins to bent DNA. We examine the structural and functional relationships between the proteins, identify their signature? and describe common features of their target DNA elements.  相似文献   

5.
6.
7.
Chromosomal proteins HMG-14 and HMG-17 have a modular structure. Here we examine whether the putative nucleosome-binding domain in these proteins can function as an independent module. Mobility shift assays with recombinant HMG-17 indicate that synthetic molecules can be used to analyze the interaction of this protein with the nucleosome core. Peptides corresponding to various regions of the protein have been synthesized and their interaction with nucleosome cores analyzed by mobility shift, thermal denaturation and DNase I digestion. A 30 amino acid long peptide, corresponding to the putative nucleosome-binding domain of HMG-17, specifically shifts the mobility of cores as compared to free DNA, elevates the tm of both the premelt and main melt of the cores and protects from DNase I digestion the same nucleosomal DNA sites as the intact protein. The binding of both the peptide and the intact protein is lost upon digestion of the histone tails by trypsin. The nucleosomal binding sites of the peptide appear identical to those of the intact protein. Thus, a region of the protein can acts as an independent functional domain. This supports the notion that HMG-14 and HMG-17 are modular proteins. This finding is relevant to the understanding of the function and evolution of HMG-14/-17, the only nucleosome core particle binding proteins known to date.  相似文献   

8.
High-mobility-group proteins HMG-1 and HMG-I/Y bind at overlapping sites within the A/T-rich enhancer element of the pea plastocyanin gene. Competition binding experiments revealed that HMG-1 enhanced the binding of HMG-I/Y to a 31-bp region (P31) of the enhancer. Circularization assays showed that HMG-1, but not HMG-I/Y, was able to bend a linear 100-bp DNA containing P31 so that the ends could be ligated. HMG-1, but not HMG-I/Y, showed preferential binding to the circular 100-bp DNA compared with the equivalent linear DNA, indicating that alteration of the conformation of the DNA by HMG-1 was not responsible for enhanced binding of HMG-I/Y. Direct interaction of HMG-I/Y and HMG-1 in the absence of DNA was demonstrated by binding of 35S-labeled proteins to immobilized histidine-tagged proteins, and this was due to an interaction of the N-terminal HMG-box-containing region of HMG-1 and the C-terminal AT-hook region of HMG-I/Y. Kinetic analysis using the IAsys biosensor revealed that HMG-1 had an affinity for immobilized HMG-I/Y (Kd = 28 nM) similar to that for immobilized P31 DNA. HMG-1-enhanced binding of HMG-I/Y to the enhancer element appears to be mediated by the formation of an HMG-1-HMG-I/Y complex, which binds to DNA with the rapid loss of HMG-1.  相似文献   

9.
Monoclonal antibodies were prepared against the high mobility group (HMG) proteins 1, 2a, and 2b from hen erythrocyte chromatin. One antibody that recognized multiple sites along HMG-1, -2a, and -2b reacted strongly with HMG proteins from all vertebrates tested. In contrast, five antibodies that detected unique epitopes on chicken HMG-1 and -2a recognized antigenic sites that exhibited restricted phylogenic distributions. The differential reactivity of these antibodies on vertebrate proteins was in agreement with traditional taxonomy in that the avian HMGs were most closely related to those from reptiles and less related to those from mammals, amphibians, bonyfish, and especially the jawless fish. Mononucleosomes generated by mild digestion of erythrocyte chromatin with micrococcal nuclease were highly enriched in HMG-2a. One antigenic determinant located within the N-terminal domain of HMG-2a was freely accessible to its antibody when the protein was bound to these mononucleosomes. In contrast, two antibodies that recognized determinants in the central region of HMG-2a exhibited little chromatin binding activity. The masking of the central domain by DNA binding was presumably not responsible for these results because all three determinants were available for antibody binding when HMG-2a was bound to DNA in vitro. Therefore, the central region of HMG-2a may be masked from antibody binding by protein-protein interactions in chromatin.  相似文献   

10.
Assembly of enhanceosomes requires architectural proteins to facilitate the DNA conformational changes accompanying cooperative binding of activators to a regulatory sequence. The architectural protein HMG-1 has been proposed to bind DNA in a sequence-independent manner, yet, paradoxically, it facilitates specific DNA binding reactions in vitro. To investigate the mechanism of specificity we explored the effect of HMG-1 on binding of the Epstein-Barr virus activator ZEBRA to a natural responsive promoter in vitro. DNase I footprinting, mutagenesis, and electrophoretic mobility shift assay reveal that HMG-1 binds cooperatively with ZEBRA to a specific DNA sequence between two adjacent ZEBRA recognition sites. This binding requires a strict alignment between two adjacent ZEBRA sites and both HMG boxes of HMG-1. Our study provides the first demonstration of sequence-dependent binding by a nonspecific HMG-box protein. We hypothesize how a ubiquitous, nonspecific architectural protein can function in a specific context through the use of rudimentary sequence recognition coupled with cooperativity. The observation that an abundant architectural protein can bind DNA cooperatively and specifically has implications towards understanding HMG-1's role in mediating DNA transactions in a variety of enzymological systems.  相似文献   

11.
Histone H1, HMG-1 and HMG-I(Y) are mammalian nuclear proteins possessing distinctive DNA-binding domain structures that share the common property of preferentially binding to four-way junction (4H) DNA, an in vitro mimic of the in vivo genetic recombination intermediate known as the Holliday junction. Nevertheless, these three proteins bind to 4H DNA in vitro with very different affinities and in a mutually exclusive manner. To investigate the molecular basis for these distinctive binding characteristics, we employed base pair resolution hydroxyl radical footprinting to determine the precise sites of nucleotide interactions of both HMG-1 and histone H1 on 4H DNA and compared these contacts with those previously described for HMG-I(Y) on the same substrate. Each of these proteins had a unique binding pattern on 4H DNA and yet shared certain common nucleotide contacts on the arms of the 4H DNA molecule near the branch point. Both the HMG-I(Y) and HMG-1 proteins made specific contacts across the 4H DNA branch point, as well as interacting at discrete sites on the arms, whereas the globular domain of histone H1 bound exclusively to the arms of the 4H DNA substrate without contacting nucleotides at the crossover region. Experiments employing the chemical cleavage reagent 1, 10-orthophenanthroline copper(II) attached to the C-terminal end of a site-specifically mutagenized HMG-I(Y) protein molecule demonstrated that this protein binds to 4H DNA in a distinctly polar, direction-specific manner. Together these results provide an attractive molecular explanation for the observed mutually exclusive 4H DNA-binding characteristics of these proteins and also allow for critical assessment of proposed models for their interaction with 4H DNA substrates. The results also have important implications concerning the possible in vivo roles of HMG-I(Y), histone H1 and HMG-1 in biological processes such as genetic recombination and retroviral integration.  相似文献   

12.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration in vitro with specially designed mini-donor HIV-1 DNA, a supercoiled plasmid acceptor, purified bacterium-derived HIV-1 integrase (IN), and host HMG protein family members. This system is comparable to one previously described for avian sarcoma virus (ASV) (A. Aiyar et al., J. Virol. 70:3571-3580, 1996) that was stimulated by the presence of HMG-1. Sequence analyses of individual HIV-1 integrants showed loss of 2 bp from the ends of the donor DNA and almost exclusive 5-bp duplications of the acceptor DNA at the site of integration. All of the integrants sequenced were inserted into different sites in the acceptor. These are the features associated with integration of viral DNA in vivo. We have used the ASV and HIV-1 reconstituted systems to compare the mechanism of concerted DNA integration and examine the role of different HMG proteins in the reaction. Of the three HMG proteins examined, HMG-1, HMG-2, and HMG-I(Y), the products formed in the presence of HMG-I(Y) for both systems most closely match those observed in vivo. Further analysis of HMG-I(Y) mutants demonstrates that the stimulation of integration requires an HMG-I(Y) domain involved in DNA binding. While complexes containing HMG-I(Y), ASV IN, and donor DNA can be detected in gel shift experiments, coprecipitation experiments failed to demonstrate stable interactions between HMG-I(Y) and ASV IN or between HMG-I(Y) and HIV-1 IN.  相似文献   

13.
The Saccharomyces cerevisiae non-histone protein 6-A (NHP6A) is a member of the high-mobility group 1/2 protein family that bind and bend DNA of mixed sequence. NHP6A has only one high-mobility group 1/2 DNA binding domain and also requires a 16-amino-acid basic tail at its N-terminus for DNA binding. We show in this report that nuclear accumulation of NHP6A is strictly correlated with its DNA binding properties since only nonhistone protein 6 A–green fluorescent protein chimeras that were competent for DNA binding were localized to the nucleus. Despite the requirement for basic residues within the N-terminal segment for DNA binding and nuclear accumulation, this region does not appear to contain a nuclear localization signal. Moreover, NHP6A does not bind to the yeast nuclear localization signal receptor SRP1 and nuclear targeting of NHP6A does not require the function of the 14 different importins. Unlike histone H2B1 which contains a classical nuclear localization signal, entry of NHP6A into the nucleus was found to be independent of Ran as judged by coexpression of Ran GTPase mutants and was shown to occur at 0 °C after a 15-min induction. These unusual properties lead us to suggest that NHP6A entry into the nucleus proceeds by a nonclassical Ran-independent pathway.  相似文献   

14.
High mobility group proteins HMG-I(Y) and HMG-1, as well as histone H1, all share the common property of binding to four-way junction DNA (4H), a synthetic substrate commonly used to study proteins involved in recognizing and resolving Holliday-type junctions formed during in vivo genetic recombination events. The structure of 4H has also been hypothesized to mimic the DNA crossovers occurring at, or near, the entrance and exit sites on the nucleosome. Furthermore, upon binding to either duplex DNA or chromatin, all three of these nuclear proteins share the ability to significantly alter the structure of bound substrates. In order to further elucidate their substrate binding abilities, electrophoretic mobility shift assays were employed to investigate the relative binding capabilities of HMG-I(Y), HMG-1 and H1 to 4H in vitro. Data indicate a definite hierarchy of binding preference by these proteins for 4H, with HMG-I(Y) having the highest affinity (Kd approximately 6.5 nM) when compared with either H1 (Kd approximately 16 nM) or HMG-1 (Kd approximately 80 nM). Competition/titration assays demonstrated that all three proteins bind most tightly to the same site on 4H. Hydroxyl radical footprinting identified the strongest site for binding of HMG-I(Y), and presumably for the other proteins as well, to be at the center of 4H. Together these in vitro results demonstrate that HMG-I(Y) and H1 are co-dominant over HMG-1 for binding to the central crossover region of 4H and suggest that in vivo both of these proteins may exert a dominant effect over HMG-1 in recognizing and binding to altered DNA structures, such as Holliday junctions, that have conformations similar to 4H.  相似文献   

15.
16.
17.
18.
Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.  相似文献   

19.
A 268 bp region (P268) of the pea plastocyanin gene promoter responsible for high-level expression has been shown to interact with the high mobility group proteins HMG-1 and HMG-I/Y isolated from pea shoot chromatin. cDNAs encoding an HMG-1 protein of 154 amino acid residues containing a single HMG-box and a C-terminal acidic tail and an HMG-I/Y-like protein of 197 amino acid residues containing four AT-hooks have been isolated and expressed in Escherichia coli to provide large amounts of full-length proteins. DNase I footprinting identified eight binding sites for HMG-I/Y and six binding sites for HMG-1 in P268. Inhibition of binding by the antibiotic distamycin, which binds in the minor groove of A/T-rich DNA, revealed that HMG-I/Y binding was 400-fold more sensitive than HMG-1 binding. Binding-site selection from a pool of random oligonucleotides indicated that HMG-I/Y binds to oligonucleotides containing stretches of five or more A/T bp and HMG-1 binds preferentially to oligonucleotides enriched in dinucleotides such as TpT and TpG.  相似文献   

20.
High-mobility-group proteins HMG-1 and HMG-I/Y bind to multiple sites within a 268 bp A/T-rich enhancer element of the pea plastocyanin gene (PetE). Within a 31 bp region of the enhancer, the binding site for HMG-1 overlaps with the binding site for HMG-I/Y. The kinetics of binding and the affinities of HMG-1 and HMG-I/Y for the 31 bp DNA were determined using surface plasmon resonance. Due to very high non-specific interactions of the HMG proteins with a carboxymethyl–dextran matrix, a novel method using a cholesterol tag to anchor the DNA in a supported lipid monolayer on a thin gold film was devised. The phosphatidylcholine monolayer produced a surface that reduced background interactions to a minimum and permitted the measurement of highly reproducible protein–DNA interactions. The association rate constant (ka) of HMG-I/Y with the 31 bp DNA was ~5-fold higher than the rate constant for HMG-1, whereas the dissociation constant (KD) for HMG-I/Y (3.1 nM) was ~7-fold lower than that for HMG-1 (20.1 nM). This suggests that HMG-I/Y should bind preferentially at the overlapping binding site within this region of the PetE enhancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号