首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of plant resistance and tolerance to frost damage   总被引:1,自引:0,他引:1  
Plant defence against any type of stress may involve resistance (traits that reduce damage) or tolerance (traits that reduce the negative fitness impacts of damage). These two strategies have been proposed as redundant evolutionary alternatives. A late‐season frost enabled us to estimate natural selection and genetic constraints on the evolution of frost resistance and tolerance in a wild plant species. We employed a genetic selection analysis (which is unbiased by environmental correlations between traits and fitness) on 75 paternal half‐sibling families of annual wild radish [Raphanus raphanistrum (Brassicaceae)]. In an experimental population in southern Ontario, we found strong selection favouring plant resistance to frost, but selection against tolerance to frost. The selection against tolerance may have been caused by a cost of tolerance, as we provide evidence for a negative genetic correlation between tolerance and fitness in the absence of frost damage. Although we found no evidence for the theoretically predicted trade‐off between frost tolerance and resistance among our families, we did detect negative correlational selection acting on the two traits, indicating that natural selection favoured high resistance combined with low tolerance and low resistance coupled with high tolerance, but not high or low levels of both traits together. There were few genetic correlations between the measured traits overall, but frost tolerance was negatively correlated with initial seed mass, and frost resistance was positively correlated with resistance to insect herbivory. Periodic episodes of strong selection such as that caused by the late‐season frost may be disproportionately important in evolution, and are likely becoming more common because of human alterations of the environment.  相似文献   

2.
In the framework of phenotypic plasticity, tolerance to browsing can be operationally defined as a norm of reaction comparing plant performance in undamaged and damaged conditions. Genetic variation in tolerance is then indicated by heterogeneity in the slopes of norms of reaction from a population. We investigated field gentian (Gentianella campestris) tolerance to damage in the framework of phenotypic plasticity using a sample of maternal lines from natural populations grown under common garden conditions and randomly split into either a control or an artificial clipping treatment. We found a diversity of tolerance norms of reaction at both the population and family level: the impacts of clipping ranged from poor tolerance (negative slope) to overcompensation (positive slope). We detected heterogeneity in tolerance norms of reaction in four populations. Similarly, we found a variety of plastic architectural responses to clipping and genetic variation in these responses in several populations. Overall, we found that the most tolerant populations were late flowering and also exhibit the greatest plastic increases in node (meristem) production in response to damage. We studied damage-imposed natural selection on plasticity in plant architecture in 10 of the sampled populations. In general, there was strong positive direct selection on final number of nodes for both control and clipped plants. However, the total selection on nodes (direct + indirect selection) within each treatment category depended heavily on the frequency of damage and cross-treatment genetic correlations in node production. In some cases, strong correlated responses to selection across the damage treatment led to total selection against nodes in the more rare environment. This could ultimately lead to the evolution of maladaptive phenotypes in one or both of the treatment categories. These results suggest that tolerance and a variety of architectural responses to damage may evolve by both direct and indirect responses to natural selection. While the present study demonstrates the potential importance of cross-treatment genetic correlations in directing the evolution of tolerance traits, such as branch or node production, we did not find any strong evidence of genetic trade-offs in candidate tolerance traits between undamaged and damaged conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Several studies across species have linked leaf functional traits with shade tolerance. Because evolution by natural selection occurs within populations, in order to explain those interspecific patterns it is crucial to examine variation of traits associated with shade tolerance and plant fitness at an intraspecific scale. In a southern temperate rainforest, two climbing plant species coexist but differ in shade tolerance. Whereas Luzuriaga radicans is most abundant in the shaded understory, L. polyphylla typically occurs in intermediate light environments. We carried out an intraspecific approach to test the hypothesis of differential selection patterns in relation to shade tolerance in these congeneric species. The probability of showing reproductive structures increased with specific leaf area (SLA) in L. polyphylla, and decreased with dark respiration in L. radicans. When reproductive output of fertile individuals was the fitness variable, we detected positive directional selection on SLA in L. polyphylla, and negative directional selection on dark respiration and positive directional selection on leaf size in L. radicans. Total light radiation differed between the microsites where the Luzuriaga species were sampled in the old-growth forest understory. Accordingly, L. radicans had a lower minimum light requirement and showed fertile individuals in darker microsites. L. radicans showed lower dark respiration, higher chlorophyll content, and greater leaf size and SLA than L. polyphylla. Results suggest that in more shade-tolerant species, established in the darker microsites, selection would favor functional traits minimizing carbon losses, while in less shade-tolerant species, plants displaying leaf traits enhancing light capture would be selected.  相似文献   

4.
Resistance and tolerance are widely viewed as two alternative adaptive responses to herbivory. However, the traits underlying resistance and tolerance remain largely unknown, as does the genetic architecture of herbivory responses and the prevalence of genetic trade-offs. To address these issues, we measured resistance and tolerance to natural apical meristem damage (AMD) by rabbits in a large field experiment with recombinant inbred lines (RILs) of Arabidopsis thaliana (developed from a cross between the Columbia x Landsberg erecta ecotypes). We also measured phenological and morphological traits hypothesized to underlie resistance and tolerance to AMD. Recombinant inbred lines differed significantly in resistance (the proportion of replicates within an RIL that resisted herbivory), and early flowering plants with tall apical inflorescences were more likely to experience damage. Tolerance (the difference in fitness between the damaged and undamaged states), also differed significantly among RILs, with some lines overcompensating for damage and producing more fruit in the damaged than undamaged state. Plastic increases in basal branch number, basal branch height, and senescence date in response to damage were all associated with greater tolerance. There was no evidence for a genetic trade-off between resistance and tolerance, an observation consistent with the underlying differences in associated morphological and phenological characters. Selection gradient analysis detected no evidence for direct selection on either resistance or tolerance in this experiment. However, a statistical model indicates that the pattern of selection on resistance depends strongly on the mean level of tolerance, and selection on tolerance depends strongly on the mean level of resistance. These observations are consistent with the hypothesis that selection may act to maintain resistance and tolerance at intermediate levels in spatially or temporally varying environments or those with varying herbivore populations.  相似文献   

5.
Hybridization is common and important to the adaptive evolution of plants. Hybridization has resulted in the formation of new species and the introgression of traits between species. This paper discusses the advantages of using hybrid systems to explore the evolution of tolerance to herbivore damage (i.e., the ability to diminish the negative effects of damage on fitness). The major consequence of hybridization likely to make it influential for tolerance evolution is that hybridization generates broad variation in traits that can be selected for or against. In addition to generating greater variation in tolerance to damage and its putative traits (e.g., traits associated with allocation patterns and meristem production), hybridization can generate greater independence among tolerance traits and between tolerance and defense traits. Greater independence may provide a greater ability to discern mechanisms of tolerance, give a greater probability of detecting allocation costs of tolerance, and provide an effective means to evaluate tradeoffs between tolerance and defense. Interspecific hybrid systems can also be used to evaluate the importance of co-adaptation of tolerance traits. Moreover, recombinant hybrids can be used in selection studies focusing on tolerance to damage to discern whether parental combinations of tolerance traits are favored over novel combinations. Research in hybrid systems that investigate the selective importance of tolerance, the patterns of inheritance of tolerance traits, and the genetic architecture of plant species involved can be vital to our evaluation of the adaptive role of tolerance to damage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Rapid post-introduction evolution has been found in many invasive plant species, and includes changes in defence (resistance and tolerance) and competitive ability traits. Here, we explored the post-introduction evolution of a trade-off between resistance to and tolerance of herbivory, which has received little attention. In a common garden experiment in a native range, nine invasive and 16 native populations of Brassica nigra were compared for growth and defence traits. Invasive populations had higher resistance to, but lower tolerance of, herbivore damage than native populations. Invasive populations survived better and produced more seeds than native ones when released from herbivores; but fitness was equivalent between the regions under ambient herbivory. The invasive populations grew taller, and produced more biomass and lighter seeds than natives, irrespective of insecticide treatment. In addition to supporting the idea of post-introduction rapid evolution of plant traits, our results also contribute to an emerging pattern of both increasing resistance and growth in invasive populations, contrary to the predictions of earlier theories of resistance-growth trade-offs.  相似文献   

7.
Host organisms are believed to evolve defense mechanisms (i.e., resistance and/or tolerance) under selective pressures exerted by natural enemies. A prerequisite for the evolution of resistance and tolerance is the existence of genetic variation in these traits for natural selection to act. However, selection for resistance and/or tolerance may be constrained by negative genetic correlations with other traits that affect host fitness. We studied genetic variation in resistance and tolerance against parasitic infection and the potential fitness costs associated with these traits using a novel study system, namely the interaction between a flowering plant and a parasitic plant. In this system, parasitic infection has significant negative effects on host growth and reproduction and may thus act as a selective agent. We conducted a greenhouse experiment in which we grew host plants, Urtica dioica, that originated from a single natural population and represented 20 maternal families either uninfected or infected with the holoparasitic dodder, Cuscuta europaea. that originated from the same site. We calculated correlations among resistance, tolerance, and host performance to test for costs of resistance and tolerance. We measured resistance as parasite performance (quantitative resistance) and tolerance as the slopes of regressions relating the vegetative and reproductive biomass of host plants to damage level (measured as parasite biomass). We observed significant differences among host families in parasite resistance and in parasite tolerance in terms of reproductive biomass, a result that suggests genetic variation in these traits. Furthermore, we found differences in resistance and tolerance between female and male host plants. In addition, the correlations indicate costs of resistance in terms of host growth and reproduction and costs of tolerance in terms of host reproduction. Our results thus indicate that host tolerance and resistance can evolve as a response to infection by a parasitic plant and that costs of resistance and tolerance may be one factor maintaining genetic variation in these traits.  相似文献   

8.
Concurrent evolution of resistance and tolerance to pathogens   总被引:1,自引:0,他引:1  
Recent experiments on plant defenses against pathogens or herbivores have shown various patterns of the association between resistance, which reduces the probability of being infected or attacked, and tolerance, which reduces the loss of fitness caused by the infection or attack. Our study describes the simultaneous evolution of these two strategies of defense in a population of hosts submitted to a pathogen. We extended previous approaches by assuming that the two traits are independent (e.g., determined by two unlinked genes), by modeling different shapes of the costs of defenses, and by taking into account the demographic and epidemiological dynamics of the system. We provide novel predictions on the variability and the evolution of defenses. First, resistance and tolerance do not necessarily exclude each other; second, they should respond in different ways to changes in parameters that affect the epidemiology or the relative costs and benefits of defenses; and third, when comparing investments in defenses among different environments, the apparent associations among resistance, tolerance, and fecundity in the absence of parasites can lead to the false conclusion that only one defense trait is costly. The latter result emphasizes the problems of estimating trade-offs and costs among natural populations without knowledge of the underlying mechanisms.  相似文献   

9.
Release from natural enemies may favor invasive plants evolving traits associated with reduced herbivore‐resistance and faster‐growth in introduced ranges. Given a genetic trade‐off between resistance and tolerance, invasive plants could also become more tolerant to herbivory than conspecifics in the native range. We conducted a field common garden study in the native range of Sapium sebiferum using seeds from native Chinese populations and invasive North American populations to compare their growth and herbivory resistance. We also performed a cage‐pot experiment to compare their resistance and tolerance to Bikasha collaris beetles that are specialist feeders on S. sebiferum trees in China. Results of the common garden study showed that Sapium seedlings of invasive populations relative to native populations were more frequently attacked by native herbivores. Growth and leaf damage were significantly higher for invasive populations than for native populations. Growth of invasive populations was not significantly affected by insecticide spray, but insecticide spray benefited that of native populations. In the bioassay trial, beetles preferentially consumed leaf tissue of invasive populations compared to native populations when beetles had a choice between them. Regression of percent leaf damage on biomass showed that invasive populations tolerated herbivory more effectively than native populations. Our results suggest that S. sebiferum from the introduced range had lower resistance but higher tolerance to specialist herbivores. Both defense strategies could have evolved as a response to the escape from natural enemies in the introduced range.  相似文献   

10.
Pleiotropic fitness trade-offs will be key determinants of the evolutionary dynamics of selection for pesticide resistance. However, for herbicide resistance, empirical support for a fitness cost of resistance is mixed, and it is therefore also questionable what further ecological trade-offs can be assumed to apply to herbicide resistance. Here, we test the existence of trade-offs by experimentally evolving herbicide resistance in Chlamydomonas reinhardtii. Although fitness costs are detected for all herbicides, we find that, counterintuitively, the most resistant populations also have the lowest fitness costs as measured by growth rate in the ancestral environment. Furthermore, after controlling for differences in the evolutionary dynamics of resistance to different herbicides, we also detect significant positive correlations between resistance, fitness in the ancestral environment and cross-resistance to other herbicides. We attribute this to the highest levels of nontarget-site resistance being achieved by fixing mutations that more broadly affect cellular physiology, which results in both more cross-resistance and less overall antagonistic pleiotropy on maximum growth rate. Consequently, the lack of classical ecological trade-offs could present a major challenge for herbicide resistance management.  相似文献   

11.
Plant tolerance to natural enemy damage is a defense strategy that minimizes the effects of damage on fitness. Despite the apparent benefits of tolerance, many populations exhibit intermediate levels of tolerance, indicating that constraints on the evolution of tolerance are likely. In a field experiment with the ivyleaf morning glory, costs of tolerance to deer herbivory in the form of negative genetic correlations between deer tolerance and fitness in the absence of damage were detected. However, these costs were detected only in the presence of insect herbivores. Such environmental dependency in the expression of costs of tolerance may facilitate the maintenance of tolerance at intermediate levels.  相似文献   

12.
Resistance and tolerance are considered to be different plant strategies against disease. While resistance traits prevent hosts becoming parasitized or reduce the extent of parasitism, tolerance traits reduce the fitness-impact of parasitism on infected hosts. Theoretical considerations predict that in some circumstances mutual redundancy will give hosts with either high resistance or high tolerance a fitness advantage over hosts that exhibit both of these traits together. However, empirical evidence has provided mixed results. In this paper, I describe the pattern of phenotypic selection imposed by the holoparasitic mistletoe Tristerix aphyllus upon resistance (spine length) and tolerance (branching) traits in the cactus Echinopsis chilensis. Results indicate that branching was an efficient compensatory mechanism, reducing 75.5% of the fitness-impact attributable to parasitism. Even though both traits showed a negative correlation, as expected from the presence of allocation costs between strategies, no correlational selection coefficient was significant indicating that selection did not favor alternative combinations of traits. Consequently, I did not find evidence for selection promoting mutually exclusive defense strategies against the mistletoe, which suggests that tolerance and resistance traits may coexist stably in populations of E. chilensis.  相似文献   

13.
Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation.  相似文献   

14.
Rapid evolution may be common in human-dominated landscapes where environmental changes are severe. We used phenotypic selection analyses and a marker-based method to estimate genetic variances and covariances to predict the potential response to selection in populations of a long-lived cycad recently exposed to drastic environmental changes. Patterns of selection in adult fecundity showed that different traits were under directional selection in subpopulations from native-undisturbed habitats and the novel degraded-forest habitat. Plants from a native-habitat subpopulation tend to maximize fitness through larger leaf area or smaller specific leaf area (SLA). In contrast, larger leaf production increased fitness in a degraded-habitat subpopulation, and canopy openness appears to be a major agent of selection for this trait. Leaf production and SLA showed significant additive genetic variance and no genetic trade-offs with examined traits, suggesting that these traits can respond to selection. Directional selection coefficients and heritability values were large, therefore significant phenotypic changes between subpopulations in few generations are possible. These results suggest that recent environmental change can result in strong directional selection in subpopulations of this cycad, and that these subpopulations have the potential to diverge at the genetic level in leaf traits after anthropogenic habitat degradation.  相似文献   

15.
Aims Early models of plant defense conceived resistance and tolerance to herbivore damage as mutually exclusive strategies. Support for this idea has been equivocal and studies on these two strategies are still needed to understand the evolution of defenses in natural populations. In Arabidopsis lyrata, the production of trichomes, a documented resistance trait, has been associated with a fitness cost in the absence of herbivores. We examined whether trichome production is also associated with reduced tolerance to simulated herbivore damage.Methods We conducted a field experiment in a natural Swedish population of A. lyrata where we inflicted leaf (0 vs. 50% of the area of each leaf removed) and inflorescence damage (0 vs. 50% of inflorescences removed) to trichome-producing and glabrous plants in a factorial design. We examined the response (survival, growth and reproduction) of the plants to the imposed damage over 2 years.Important findings Trichome-producing plants were not less tolerant than glabrous plants to simulated herbivore damage (no significant morph × leaf damage or morph × inflorescence damage interactions). Inflorescence and leaf damage had independent negative effects on the performance of damaged plants. Leaf damage reduced rosette size the year of damage, but effects on reproductive output in the year of damage, and on survival and reproductive performance the following year were weak and not statistically significant. Inflorescence damage significantly reduced the number of flowers, fruits and seeds the year of damage, but not in the following year. Irrespective of morph, the study population was more tolerant to leaf than to inflorescence damage. The results indicated no trade-off between trichome production and tolerance, suggesting that these two defense mechanisms have the potential to evolve independently in this A. lyrata population.  相似文献   

16.
Possible non-target effects of the widely used, non-selective herbicide glyphosate were examined in six cyanobacterial strains, and the basis of their resistance was investigated. All cyanobacteria showed a remarkable tolerance to the herbicide up to millimolar levels. Two of them were found to possess an insensitive form of glyphosate target, the shikimate pathway enzyme 5-enol-pyruvyl-shikimate-3-phosphate synthase. Four strains were able to use the phosphonate as the only phosphorus source. Low uptake rates were measured only under phosphorus deprivation. Experimental evidence for glyphosate metabolism was also obtained in strains apparently unable to use the phosphonate. Results suggest that various mechanisms may concur in providing cyanobacterial strains with herbicide tolerance. The data also account for their widespread ability to metabolize the phosphonate. However, such a capability seems limited by low cell permeability to glyphosate, and is rapidly repressed when inorganic phosphate is available.  相似文献   

17.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

18.
Plants defend themselves against herbivores via resistance, which reduces damage, and tolerance, which minimizes the negative effects of damage. Theory predicts the existence of tradeoffs between defense and growth, as well as between resistance and tolerance, that could maintain the genetic variation for resistance and tolerance often observed in plant populations. We examined resistance and tolerance among aspen (Populus tremuloides) trees grown under divergent soil nutrient regimes. This common garden experiment revealed substantial genetic variation for resistance and tolerance under both low- and high-nutrient conditions. Costs of resistance exist, particularly under high-nutrient conditions where allocation to resistance chemicals competes directly with growth for limited carbon resources. We found no significant costs of tolerance, however, under either nutrient condition. Despite genetic variation for both resistance and tolerance, we found no evidence for a tradeoff between these two defense traits suggesting that resistance and tolerance are complementary, rather than mutually exclusive, defenses in aspen.  相似文献   

19.
The absence of continued evolutionary change despite the presence of genetic variation and directional selection is very common. Genetic correlations between traits can reduce the evolvability of traits. One intriguing example might be found in a sexual conflict over sexually dimorphic traits: a common genetic architecture constrains the response to selection on a trait subjected to sexually asymmetric selection pressures. Here we show that males and females of the mealworm beetle Tenebrio molitor differ in the quantitative genetic architecture of four traits related to immune defense and condition. Moreover, high genetic correlations between the sexes constitute a genetic constraint to the evolution of sexual dimorphism in immune defense. Our results suggest a general mechanism by which sexual conflict can promote evolutionary stasis. We furthermore show negative genetic correlations, strong indications of trade-offs, between immune traits for two pairs of traits in females.  相似文献   

20.
Defense costs provide a major explanation for why plants in nature have not evolved to be better defended against pathogens and herbivores; however, evidence for defense costs is often lacking. Plants defend by deploying resistance traits that reduce damage, and tolerance traits that reduce the fitness effects of damage. We first tested the defense-stress cost (DSC) hypothesis that costs of defenses increase and become important under competitive stress. In a greenhouse experiment, uniparental maternal families of the host plant Arabis perennans were grown in the presence and absence of the bunch grass Bouteloua gracilis and the herbivore Plutella xylostella. Costs of resistance and tolerance manifest as reduced growth in the absence of herbivory were significant when A. perennans grew alone, but not in the competitive environment, in contrast to the DSC hypothesis. We then tested the defense-stress benefit (DSB) hypothesis that plant defenses may benefit plants in competitive situations thereby reducing net costs. For example, chemical resistance agents and tolerance may also have functions in competitive interactions. To test the DSB hypothesis, we compared differentially competitive populations for defense costs, assuming that poorer competitors from less dense habitats were less likely to have evolved defenses that also function in competition. Without competitive benefits of defenses, poorer competitors were expected to have higher net costs of defenses under competition in accordance with DSB. Populations of A. perennans and A. drummondii that differed dramatically in competitiveness were compared for costs, and as the DSB hypothesis predicts, only the poor competitor population showed costs of resistance under competition. However, cost of tolerance under competition did not differ among populations, suggesting that the poor competitors might have evolved a general stress tolerance. Although the DSC hypothesis may explain cases where defense costs increase under stress, the DSB hypothesis may explain some cases where costs decrease under competitive stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号