首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we investigated whether bcl-xL can be involved in the modulation of the angiogenic phenotype of human tumor cells. Using the ADF human glioblastoma and the M14 melanoma lines, and their derivative bcl-xL-overexpressing clones, we showed that the conditioned medium of bcl-xL transfectants increased in vitro endothelial cell functions, such as proliferation and morphogenesis, and in vivo vessel formation in Matrigel plugs, compared with the conditioned medium of control cells. Moreover, the overexpression of bcl-xL induced an increased expression of the proangiogenic interleukin-8 (CXCL8), both at the protein and mRNA levels, and an enhanced CXCL8 promoter activity. The role of CXCL8 on bcl-xL-induced angiogenesis was validated using CXCL8-neutralizing antibodies, whereas down-regulation of bcl-xL through antisense oligonucleotide or RNA interference strategies confirmed the involvement of bcl-xL on CXCL8 expression. Transient overexpression of bcl-xL led to extend this observation to other tumor cell lines with different origin, such as colon and prostate carcinoma. In conclusion, our results showed that CXCL8 modulation by bcl-xL regulates tumor angiogenesis, and they point to elucidate an additional function of bcl-xL protein.  相似文献   

2.
3.
Human myometrial cells respond to the endotoxin lipopolysaccharide (LPS) by activation of protein kinase C (PKC) zeta and nuclear translocation of the p65 subunit of NF-kB. Our first objective was to determine the expression of TLR4 in cultured myometrial cells. Positive immunoreactivity observed for TLR4 suggests that myometrial cells have the potential to respond to LPS. To confirm that LPS signals via TLR4, the ability of an anti-TLR4 neutralizing antibody to block LPS-induced translocation of p65 was demonstrated. To determine whether LPS-induced nuclear translocation of p65 is mediated through the PKC pathway, myometrial cells were treated with various inhibitors of the PKC isoforms already characterized in human myometrium. Neither the selective conventional PKC inhibitor nor the inhibitor of PKCdelta affected NF-kB activation. By contrast, we found that treatment of myometrial cells with an antisense against PKCzeta affect LPS-induced nuclear translocation of the p65 subunit of NF-kB. Accordingly, our data support the notion that PKCzeta is essential for LPS-induced NF-kB p65 subunit nuclear translocation in human myometrial cells.  相似文献   

4.
5.
6.
Studying cartilage differentiation, we observed the emergence of inflammation-related proteins suggesting that a common pathway was activated in cartilage differentiation and inflammation. In the present paper, we investigated the expression pathway of the inflammation-related enzyme Cyclooxygenase-2 (COX-2) during differentiation and inflammatory response of the chondrocytic cell line MC615. Cells were cultured either as (i) proliferating prechondrogenic cells expressing type I collagen or (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen. The p38 and the NF-kB pathways were investigated in standard conditions and after inflammatory agents treatment. NF-kB was constitutively activated in differentiated cells. The activation level of NF-kB in differentiated cells was comparable to the level in proliferating cells treated with the inflammatory agent LPS. In both cases, p65 was bound to the NF-kB consensus sequence of COX-2 promoter. p38, constitutively activated in differentiated cells, was activated in proliferating cells by treatment with LPS or IL-1alpha. In stimulated proliferating cells the two pathways are connected since addition of the p38-specific inhibitor SB203580 inhibited p38 activation, significantly reduced NF-kB activation and repressed COX-2 synthesis indicating that p38 is upstream NF-kB activation and COX-2 synthesis. In differentiated cells, the treatment with the inflammatory agent neither enhance NF-kB activation, nor synthesis of COX-2 while the addition of SB203580 neither repressed activation of p38, nor COX-2 synthesis, suggesting a constitutive activation of a p38/NF-kB/COX2 pathway. Our data indicate that in chondrocytes, COX-2 is expressed via p38 activation/NF-kB recruitment during both differentiation and inflammatory response.  相似文献   

7.
8.
9.

Background

Studies have shown the existence of p21 induction in a p53-dependent and -independent pathway. Our previous study indicates that DOX-induced p65 is able to bind the p21 promoter to activate its transactivation in the cells.

Methods

Over-expression and knock-down experiments were performed in Human Pancreatic Carcinoma (PANC1) cells. Cell cycle and cell death related proteins were assessed by Western Blotting. Cytotoxicity assay was checked by CCK-8 kit. Cell growth was analyzed by flow cytometers.

Results

Here we showed that over-expression of p65 decreased the cytotoxic effect of DOX on PANC1 cells, correlating with increased induction of cytoplasmic p21. We observed that pro-caspase-3 physically associated with cytoplasmic p21, which may be contribution to prevent p21 translocation into the nucleus. Our data also suggested that no clear elevation of nuclear p21 by p65 provides a survival advantage by progression cell cycle after treatment of DOX. Likewise, down-regulation of p65 expression enhanced the cytotoxic effect of DOX, due to a significant decrease of mRNA levels of anti-apoptotic genes, such as the cellular inhibitor of apoptosis-1 (c-IAP1), and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2), leading to efficient induction of caspase-3 cleavage in the cells. More, we present evidence that over-expression of p53 or p53/p65 in the PANC1 cells were more sensitive to DOX treatment, correlated with activation of caspase-3 and clear elevation of nuclear p21 level. Our previous data suggested that expression of p21 increases Gefitinib-induced cell death by blocking the cell cycle at the G1 and G2 phases. The present findings here reinforced this idea by showing p21''s ability of potentiality of DOX-induced cell death correlated with its inhibition of cell cycle progression after over-expression of p53 or p53/p65.

Conclusion

Our data suggested p65 could increase p53-mediated cell death in response to DOX in PANC1 cells. Thus, it is worth noting that in p53 null or defective tumors, targeting in down-regulation of p65 may well be useful, leading to the potentiality of chemotherapeutic drugs.  相似文献   

10.
11.
12.
13.
14.
Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB) was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX), a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.  相似文献   

15.
Expression of alpha1antichymotrypsin (ACT) is significantly activated by interleukin-1 (IL-1) in human astrocytes; however, it is barely affected by IL-1 in hepatocytes. This tissue-specific regulation depends upon an enhancer that contains both nuclear factor kappaB (NF-kappaB) and activating protein 1 (AP-1) elements, and is also observed for an NF-kappaB reporter but not for an AP-1 reporter. We found efficient activation of NF-kappaB binding in both cell types; however, this binding was persistent in glial cells and only transient in hepatocytes. IL-1-activated NF-kappaB complexes consisted of p65 and p50, with p65 transiently phosphorylated on serine 536 in glial cells whereas more persistently in hepatic cells. Overexpression of p65 or constitutively active IKKbeta (inhibitor of NF-kappaB kinase beta) resulted in an efficient activation of the ACT reporter in hepatic cells, indicating that a specific mechanism exists in these cells terminating IL-1 signaling. IL-1 effectively induced the degradation of inhibitor of NF-kappaBalpha (IkBalpha) and IkBepsilon in both cell types but IkBbeta was not affected. However, IkBalpha was resynthesized much more rapidly in hepatic cells in comparison to glial cells. In addition, the initial levels of IkBalpha were much lower in glial cells. We propose that the tissue-specific regulation of the ACT gene expression by IL-1 is determined by different efficiencies of IkBalpha resynthesis in glial and hepatic cells.  相似文献   

16.
17.
18.
In this study, we examined the regulation of NF-kappaB activation and IL-8/CXCL8 expression by thrombin in human lung epithelial cells (EC). Thrombin caused a concentration-dependent increase in IL-8/CXCL8 release in a human lung EC line (A549) and primary normal human bronchial EC. In A549 cells, thrombin, SFLLRN-NH2 (a protease-activated receptor 1 (PAR1) agonist peptide), and GYPGQV-NH2 (a PAR4 agonist peptide), but not TFRGAP-NH2 (a PAR3 agonist peptide), induced an increase in IL-8/CXCL8-luciferase (Luc) activity. The thrombin-induced IL-8/CXCL8 release was attenuated by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (a thrombin inhibitor), U73122 (a phosphoinositide-phospholipase C inhibitor), Ro-32-0432 (a protein kinsase C alpha (PKC alpha) inhibitor), an NF-kappaB inhibitor peptide, and Bay 117082 (an IkappaB phosphorylation inhibitor). Thrombin-induced increase in IL-8/CXCL8-Luc activity was inhibited by the dominant-negative mutant of c-Src and the cells transfected with the kappaB site mutation of the IL-8/CXCL8 construct. Thrombin caused time-dependent increases in phosphorylation of c-Src at tyrosine 416 and c-Src activity. Thrombin-elicited c-Src activity was inhibited by Ro-32-0432. Stimulation of cells with thrombin activated IkappaB kinase alphabeta (IKK alphabeta), IkappaB alpha phosphorylation, IkappaB alpha degradation, p50 and p65 translocation from the cytosol to the nucleus, NF-kappaB-specific DNA-protein complex formation, and kappaB-Luc activity. Pretreatment of A549 cells with Ro-32-4032 and the dominant-negative mutant of c-Src DN inhibited thrombin-induced IKK alphabeta activity, kappaB-Luc activity, and NF-kappaB-specific DNA-protein complex formation. Further studies revealed that thrombin induced PKC alpha, c-Src, and IKK alphabeta complex formation. These results show for the first time that thrombin, acting through PAR1 and PAR4, activates the phosphoinositide-phospholipase C/PKC alpha/c-Src/IKK alphabeta signaling pathway to induce NF-kappaB activation, which in turn induces IL-8/CXCL8 expression and release in human lung EC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号