首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The regulation of endogenous levels of ascorbic acid in soybean by far-red absorbing form of phytochrome (Pfr) and by cryptic red light signal (CRS) was studied. Cryptic red light signal is produced by red light pre-irradiation of a photoreceptor other than far-red absorbing form of phytochrome (Pfr) and CRS amplifies the action of phytochrome. The endogenous level of ascorbic acid levels enhanced by phytochrome was amplified by CRS. The lifetime of CRS was from 0 to 2 h and the peak of enhancement of ascorbic acid due to CRS was between 16 to 24 h of dark incubation after the end of the treatment. CRS was found to be ineffective on UV-B enhanced endogenous levels of ascorbic acid.Key words: ascorbic acid, cryptic red light signal, glycine max, phytochrome, ultraviolet-BThe phytochrome mediated morphogenesis involves the conversion of Pr [red absorbing form] to Pfr [far-red absorbing form] and the magnitude of the response is dependent on Pfr/P tot ratio established at the end of the irradiation.1 In broom Sorghum anthocyanin synthesis induced by red light [R1] is reversible with far-red light. But a second red pulse [R2] given after the reversal resulted in increased anthocyanin production compared to the first pulse [R1]. When the red pulse was repeatedly given after every reversal with far-red, the anthocyanin production increased proportionately to the number of previously given pulses.2 Thus red pre-treatment induced a change in the cellular physiological state or change in content of a relevant substance[s] which is designated as Cryptic Red Light Signal [CRS] associated with red signal transduction.2 CRS was first characterized in detail in Broom Sorghum as Pfr amplifying signal produced by red pre-irradiation. CRS is inactive in the absence of Pfr but enhances the action of Pfr. CRS escapes reversal when the plants are exposed to far-red and is probably produced by a different species of phytochrome, distinct from the conventional reversible phytochrome.3We have investigated whether CRS influences other phytochrome regulated processes in plants in addition to anthocyanin synthesis. We chose another process, the synthesis of endogenous ascorbic acid, which is also regulated by conventional phytochrome.4 In soybean, the endogenous level of ascorbic acid is enhanced by conventional far-red reversible form of phytochrome. In addition, an independent UV-B photoreceptor [non reversible with far-red light] also enhances the endogenous synthesis of ascorbic acid in soybean. By using repeated pulses of red light, we have demonstrated that the Cryptic Red Signal is operative in soybean also and it amplifies the red light induced enhancement in the level of ascorbic acid. That CRS is active only in the presence of Pfr is demonstrated by the fact that pre-irradiation with red light is ineffective in amplifying UV-B induced enhancement of ascorbic acid levels. A similar observation on UV-B induced anthocyanin synthesis has been made in Broom Sorghum.2 A separate UV-B photoreceptor independent of phytochrome operates in the plants.5 Although CRS is presumably produced by pre-irradiation with red light, it does not enhance UV-B induced anthocyanin synthesis or ascorbic acid synthesis in the absence of formation of Pfr by the second red pulse.The life-time of CRS was determined as 6 h in 20°C and 3 h in 24°C grown seedlings of Broom Sorghum with reference to anthocyanin synthesis.2 The life-time of CRS determined in soybean seedlings grown at 25°C was upto 1 h.6 Since growing seedlings at a low temperature enhanced the effectiveness of CRS in Broom Sorghum, it was concluded that low temperature may either extend the lifetime of CRS or generate higher amount of CRS.2 Although the exact nature of CRS is yet to be analyzed, work in our laboratory has established the universal nature of this signal and evidences have been obtained for CRS effect in promoting red light induced hypocotyls inhibition in Cucumber seedlings and also red light induced synthesis of betacyanins in Amaranthus seedlings (submitted for publication).  相似文献   

2.
Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in 03-susceptible (O3S) 'Hark' and O3-resistant (O3R) 'Hood'soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 h intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.  相似文献   

3.
The possible mechanisms underlying the acquisition of an increased ascorbic acid content by mouse erythrocytes containing the malarial parasite Plasmodium vinckei were investigated. Ascorbic acid was taken up readily by parasitized red blood cells but not by controls, whilst its partly oxidized form, dehydroascorbic acid, entered both. The uptake of both ascorbic acid and dehydroascorbic acid into erythrocytes was increased as a result of malarial infection. Lysates prepared from parasitized red blood cells reduced exogenous dehydroascorbic acid to ascorbic acid at a higher rate than control red blood cell lysates; this difference was abolished following dialysis of the lysates, a process which removes endogenous reduced glutathione (GSH). The rates of chemical and enzymatic reduction of dehydroascorbic acid to ascorbic acid by GSH were of similar magnitude, thus calling into question the existence of a specific dehydroascorbate reductase in erythrocytes and parasites. These observations suggest that the increased uptake of dehydroascorbic acid into parasitized red blood cells may be a result of enhanced dehydroascorbate-reducing capacity, whilst the presence of the parasite induces a selective increase in the permeability of the erythrocyte plasma membrane to ascorbic acid. The endogenous ascorbic acid content of livers obtained from infected mice was 55% below the normal concentration and its relative rate of destruction during incubation in vitro was enhanced in comparison with that of control livers. Furthermore, the capacity of liver homogenates to synthesize ascorbic acid from glucuronic acid was greatly reduced in infected mice. Therefore it is unlikely that the increase in ascorbic acid content of parasitized red blood cells is a consequence of increased biosynthesis and release of ascorbic acid by the host liver. We have not been able to exclude the possibility that the malarial parasite itself may be capable of de novo synthesis of ascorbic acid.  相似文献   

4.
1. From leaves of barley and spinach, cellular components wereisolated and brought together under various conditions to investigatethe fate of ascorbic acid as affected by the components in thelight and dark. 2. A new colorimetric method for assaying ascorbic acid andsome other reducing substances was devised, measuring the colorof molybdenum-blue developed by the substances in the presenceof excess amounts of phosphomolybdate and inorganic acid. 3. The photooxidation of ascorbic acid by green and yellow filtrates,prepared from green and etiolated leaves of barley, was studiedby the ordinary as well as the new colorimetric method. In thepresence of oxygen, the oxidation of ascorbic acid was foundto be accelerated by light in the green filtrate, but not inthe yellow filtrate. 4. The oxidation of the endogenous reducing substance containedin the supernatant fraction of spinach leaf extracts was studiedin the presence of washed chloroplasts (spinach). In the presenceof oxygen, the rate of oxidation in the light was markedly higherthan in the dark. From the changes in absorption spectrum accompanyingthe reaction, the endogenous reducing substance in questionwas identified as ascorbic acid. 5. The occurrence of an endogenous precursor of ascorbic acidin spinach leaf extracts was disclosed. The photoreduction ofthis precursor into ascorbic acid was studied in the precenceof spinach chloroplasts. A specific inhibition of this reactionby phosphoglycerate and glycerophosphate was discovered. 6. The experimental results obtained were discussed in connectionwith the role of ascorbic acid in photosynthesis. (Received September 13, 1960; )  相似文献   

5.
Liu X  Cohen JD  Gardner G 《Plant physiology》2011,157(2):891-904
In plants, light is an important environmental signal that induces photomorphogenesis and interacts with endogenous signals, including hormones. We found that light increased polar auxin transport in dark-grown Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) hypocotyls. In tomato, this increase was induced by low-fluence red or blue light followed by 1 d of darkness. It was reduced in phyA, phyB1, and phyB2 tomato mutants and was reversed by far-red light applied immediately after the red or blue light exposure, suggesting that phytochrome is involved in this response. We further found that the free indole-3-acetic acid (IAA) level in hypocotyl regions below the hook was increased by red light, while the level of conjugated IAA was unchanged. Analysis of IAA synthesized from [13C]indole or [13C]tryptophan (Trp) revealed that both Trp-dependent and Trp-independent IAA biosynthesis were increased by low-fluence red light in the top section (meristem, cotyledons, and hook), and the Trp-independent pathway appears to become the primary route for IAA biosynthesis after red light exposure. IAA biosynthesis in tissues below the top section was not affected by red light, suggesting that the increase of free IAA in this region was due to increased transport of IAA from above. Our study provides a comprehensive view of light effects on the transport and biosynthesis of IAA, showing that red light increases both IAA biosynthesis in the top section and polar auxin transport in hypocotyls, leading to unchanged free IAA levels in the top section and increased free IAA levels in the lower hypocotyl regions.  相似文献   

6.
7.
Red light and gibberellic acid were about equally effective in promoting germination of Grand Rapids lettuce (Lactuca sativa L.) seeds. With initial far red light treatment more than 80% remained dormant in subsequent dark storage. After 2 days of dark storage, red light effectively promoted germination, while gibberellic acid action was weak. With between 2 and 10 days of dark storage, gibberellic acid had little effect, while promotion by red light decreased slowly and finally disappeared. After 10 days of dark storage, both gibberellic acid and red light were required for germination. The dark storage treatment interferes with phytochrome-independent germination processes and cannot be overcome by added gibberellic acid. However, storage may also decrease the effectiveness of endogenous gibberellins. Phytochrome-dependent germination seems to require only low levels of endogenous gibberellin activity or the addition of gibberellic acid. Gibberellins and red light appear to act on germination by regulation of sequential sites of a branched-looped pathway.  相似文献   

8.
9.
Anthocyanin synthesis in Sorghum bicolor Moench induced by a low-fluence response of phytochrome (phy) is multiplicatively amplified by a cryptic red-light signal (CRS) produced by red light (R). The photoreceptor for CRS and its features in CRS production were studied. (i) An action spectrum determined with a 200-s light pulse of wavelengths from 347 to 693 nm had peaks at 657 and 378 nm. (ii) The CRS-producing effect of R, even as short a pulse as 20 s, was neither suppressed by an immediately subsequent far-red light (FR) pulse nor increased by placing a dark interval of 180 s between R and FR; simultaneous FR, however, suppressed the R action in accordance with the resulting ratios of the FR-absorbing form (Pfr) to total phy. (iii) The effect of R increased with increasing fluence rate to plateau at the same fluence rate regardless of the pulse length, but the level of this plateau depended on the pulse length. (iv) The effect of R increased with increasing pulse length when compared at the same fluence, whether saturating or unsaturating; thus, no reciprocity law holds. These results indicate that the photoreceptor for CRS production is a phy, Pfr being active, which presumably shows very fast dark reversion to the R-absorbing form without absorbing FR. The possible CRS-production mechanism of the phy and its significance in the so-called R high-irradiance response of phy are discussed. Received: 26 June 1998 / Accepted: 27 July 1998  相似文献   

10.
Hydroxycinnamic acid esters and photoperiodic flowering induction in vitro of Cichorium intybus.
In root tissues of Cichorium intybus L. cv. Witloof cultured in vitro, the photoinductive period occurs between the 8th and the 16th day after the start of the culture. The promotive light conditions are either long days (16 h photoperiod) or daily cycles of 9 h white + 15 h red light applied during the photoinductive period in an otherwise short day treatment. During the photoinductive period and under suitable irradiation conditions, the endogenous hydroxycinnamic acid esters (especially chlorogenic acid) show a regular development as from the 8th day, reaching a maximal level by the 16th day. The amount of these molecules then decreases rapidly, preceding the external expression of floral induction. When we apply non-inductive conditions [short days (9 h) or daily cycles of 9 h white + 15 h (far-red + red) light supplied from the 8th to the 16th day in otherwise short day conditions], the metabolic changes indicate the same pattern during the inductive period as mentioned above. However, a fundamental difference exists between the inductive and non-inductive conditions, so that the production of hydroxycinnamic acid esters is particularly high towards the end of the second week of in vitro development in the induced state. This increase is not primarily due to increased photosynthetic activity in long day conditions, since it occurs both in the long day treatments and in the treatments with daily cycles of 9 h white + 15 h red light, thus revealing the morphogenetic action of light via phytochrome. This accumulation of hydroxycinnamic acid esters is correlated with floral induction, which appears to be ineffective unless there is a certain minimum amount of these molecules in the tissues.  相似文献   

11.
The effects of the treatment of different tissues of three bean cultivars (Pinto, Vilmorin and Arroz) with ultra‐violet (UV) UV‐B and UV‐C radiation and red light on the activity, quantity and RNA levels of NADP‐malic enzyme (NADP‐ME) were determined. Exposure to UV‐B radiation for 8 h caused a marked increase of NADP‐ME from leaves, stems and roots in the three cultivars studied. A similar induction was observed in the leaves and stems after 8 h of exposure under UV‐C, but not in the roots, suggesting that a different signal might be acting to induce the expression of NADP‐ME after UV‐B and UV‐C exposure. In contrast, red light was ineffective in inducing NADP‐ME in either tissue, so the regulation of the expression of this enzyme is phytocrome‐independent. The activity of superoxide dismutase, ascorbate peroxidase, catalase and peroxidase was also different in plants treated with UV‐B, UV‐C and photosynthetically active radiation, suggesting that various pathways may be acting in the regulation of these enzymes by UV‐B and UV‐C. Reactive oxygen species (ROS) were also required for UV‐B induction of NADP‐ME, as the addition of ascorbic acid before UV‐B treatment prevented NADP‐ME induction, whereas salicylic acid was not effective in inducing the enzyme, showing that NADP‐ME induction by UV‐B is ROS dependent but salicylic acid independent.  相似文献   

12.
13.
Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3, GA7, indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.  相似文献   

14.
Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650–660), far red (720–730) and blue (440–450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes.  相似文献   

15.
During temporary incubation at 25°C in buffered solutions (pH 4.0) of abscisic acid (ABA) seeds of lettuce ( Lactuca sativa L. cv. Olof) lost the red-light initiated ability to germinate in buffer. The development of secondary dormancy required an inhibitory ABA content in the seeds during a number of days. A temporary incubation in ABA during 24 h met these requirements only if the solution was about 100-fold more concentrated than during continuous incubation. Studies with 2-14C-ABA showed that the amount of ABA which had penetrated in 24 h was reduced by a factor 100 within 3 to 4 days during subsequent incubation in buffer. Both leaching and metabolic changes were involved in the reduction process. The nature of the metabolic products remained obscure. A shift to 2°C after incubation in ABA prevented the induction of secondary dormancy, but inhibited ABA metabolism. ABA did not interfere with the induction rate of secondary dormancy, and it was not required to maintain the state of dormancy. The sole function of ABA was the non-specific inhibition of germination, which indirectly facilitated the development of an ABA independent secondary dormancy. – The level of endogenous ABA was compared to the amount of ABA found in the embryo during and after incubation in ABA solutions marked with 2-14C-ABA. The level of endogenous ABA in air-dry seeds (0.11 ng/mg dry weight) corresponded to the minimal level at which penetrated ABA inhibited germination. This level had to be present at least during 4 to 5 days to inhibit the effect of red light. Since endogenous ABA was quickly reduced upon imbibition, a regulatory function of endogenous ABA in the inhibition of red light induced germination can be ruled out. A function in the temporary inhibition of dark germination and, consequently, in the development of secondary light irresponsiveness cannot be excluded, however.  相似文献   

16.
Exogenous applications of gibberellins (GAs) increased the extractable activity of leaf sucrose phosphate synthase (SPS) in soybean (Glycine max [L.]) and spinach (Spinacia oleracea [L.]). The response to GA applications was detectable within 2 h postapplication and was still observed 6 h, 24 h, and 7 d after treatment. When paclobutrazol, a GA biosynthesis inhibitor, was applied to intact soybean and spinach plants, decreased extractable SPS activity resulted within 24 h following the treatment. Different methods of GA application (spray, injection, capillary wick, and excised leaf systems) produced similar effects on SPS activity of soybean leaves. Protein synthesis in soybean leaves appeared to be necessary for GA-promoted SPS activity because gibberellic acid only partially reversed the inhibitory effect of pretreatment with cycloheximide. Levels of SPS protein from crude extracts of spinach plants were measured by a dot blot technique using monoclonal antibodies against SPS. Application of gibberellic acid to spinach leaves increased levels of SPS protein 2 h, 24 h, and 7 d after treatment. The results suggest that, in both soybean and spinach, GA is one of the endogenous hormonal factors that regulate the steady-state level of SPS protein and, hence, its activity.  相似文献   

17.
The capacity of ascorbic acid biosynthesis in potato tuber tissue is closely correlated with the ascorbic acid content of the cells: the lower the endogenous content of ascorbic acid, the greater its biosynthesis. At the highest level of ascorbic acid found in the cells, the biosynthetic capacity is virtually zero. In these conditions, adding glucose (the first precursor of ascorbic acid) has no effect whatsoever, whereas adding galactono-gamma-lactone (the last precursor) induces a high rate of ascorbic acid synthesis. It is suggested that AA biosynthesis is subject to a regulatory mechanism "in vivo" which controls an initial step in the biosynthetic pathway. The last step in this pathway, catalyzed by galactone oxidase, is never blocked and, moreover, its activity is greater than that of the preceding steps.  相似文献   

18.
Changes in Endogenous Cytokinins of Lettuce Seed during Germination   总被引:2,自引:0,他引:2  
Using the soybean callus bioassay it has been shown that dormant lettuce seeds (Lactuca sativa L. cv. Grand Rapids) contain large amounts of water soluble cytokinins and small amounts of butanol soluble ones. When the seeds are irradiated with red light, or imbibed with 5 mg/1 gibberellic acid in the dark, the total cytokinin content of the seeds decreases, the level of water soluble cytokinins decreases, and the level of the butanol soluble cytokinins increases. Far-red light does not reverse this effect completely although cytokinin activity in the butanol extracts decreases following such irradiation. It is proposed that the interconversion of cytokinins initiated by red light, or gibberellic acid in the dark, is one of the primary events leading to radicle elongation in light-sensitive lettuce seed.  相似文献   

19.
Factors affecting the balance between pro- and antioxidant effects of ascorbic acid and glutathione were studied in soybean phosphatidylcholine liposomes challenged with Fe2+/H2O2. Effective antioxidant protection by alpha-tocopherol appeared to be due to efficient reaction with lipid oxy-radicals in the bilayer rather than to interception of initiating oxygen radicals. At concentrations above a threshold level of approximately 0.2 mol % (based on phospholipid content), alpha-tocopherol completely suppressed lipid oxy-radical propagation, which was measured as malondialdehyde production. Both ascorbic acid and glutathione, alone or in combination, enhanced lipid oxy-radical propagation. Alpha-Tocopherol, incorporated into liposomes at concentrations above its threshold protective level, reversed the pro-oxidant effects of 0.1-1.0 mM ascorbic acid but not those of glutathione. Ascorbic acid also prevented alpha-tocopherol depletion. The combination of ascorbic acid and subthreshold levels of alpha-tocopherol only temporarily suppressed lipid oxy-radical propagation and did not maintain the alpha-tocopherol level. Glutathione antagonized the antioxidant action of the alpha-tocopherol/ascorbic acid combination regardless of alpha-tocopherol concentration. These observations indicate that membrane alpha-tocopherol status can control the balance between pro- and antioxidant effects of ascorbic acid. The data also provide the most direct evidence to date that ascorbic acid interacts directly with components of the phospholipid bilayer.  相似文献   

20.
The requirement for calcium in blue light-promoted stomatal opening, in comparison with that in red light, was studied in epidermal strips of Commelina benghalensis L. Blue light promoted stomatal opening in the presence of a low level of calcium, whereas in red light opening was relatively tolerant to calcium. Stomatal opening under blue light was restricted by external calcium (above 5 μ M ) or abscisic acid. When present in the incubation medium, EGTA increased the extent of stomatal opening under blue light. Verapamil (a calcium-channel blocker) and trifluoperazine (TFP, a calmodulin antagonist) reduced the stimulation of stomatal opening by blue light. Lanthanum, an external calcium-channel antagonist, had no significant effect on stomatal opening under either blue or red light. These observations indicate that blue light-promoted stomatal opening preferentially occurs at low levels of calcium, and modulation by calmodulin is strongly suggested. We conclude that a fine-tuning of the calcium level within guard cells is essential during the transduction of the blue light signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号