首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of cell-free expression systems as an alternative to cell-based methods for protein production is greatly facilitating studies of protein functions. Recent improvements to cell-free systems, and the development of cell-free protein display and microarray technologies, have led to cell-free protein synthesis becoming a powerful tool for large-scale analysis of proteins. This paper reviews the most commonly used cell-free systems and their applications in proteomics.  相似文献   

2.
Shimizu Y  Kuruma Y  Ying BW  Umekage S  Ueda T 《The FEBS journal》2006,273(18):4133-4140
Cell-free translation systems have developed significantly over the last two decades and improvements in yield have resulted in their use for protein production in the laboratory. These systems have protein engineering applications, such as the production of proteins containing unnatural amino acids and development of proteins exhibiting novel functions. Recently, it has been suggested that cell-free translation systems might be used as the fundamental basis for cell-like systems. We review recent progress in the field of cell-free translation systems and describe their use as tools for protein production and engineering.  相似文献   

3.
A Müller-Lucks  S Bock  B Wu  E Beitz 《PloS one》2012,7(7):e42186
Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP) indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD), proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.  相似文献   

4.
While cell-free systems are increasingly used for protein expression in structural and functional studies, several proteins are difficult to express or expressed only at low levels in cell-free lysates. Here, we report that fusion of the human immunoglobulin kappa light chain constant domain (Ckappa) at the C terminus of four representative proteins dramatically improved their production in the Escherichia coli S30 system, suggesting that enhancement of cell-free protein expression by Ckappa fusion will be widely applicable.  相似文献   

5.
Following the success of genome sequencing projects, attention has now turned to studies of the structure and function of proteins. Although cell-based expression systems for protein production have been widely used, they have certain limitations in terms of the quality and quantity of the proteins produced and for high-throughput production. Many of these limitations can be circumvented by the use of cell-free translation systems. Among such systems, the wheat germ based system is of special interest for its eukaryotic nature; it has the significant advantage of producing eukaryotic multidomain proteins in a folded state. Several advances in the use of cell-free expression systems have been made in the past few years and successful applications of these systems to produce proteins for functional and structural biology studies have been reported.  相似文献   

6.
Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.  相似文献   

7.
Membrane proteins are highly underrepresented in structural data banks due to tremendous difficulties that occur upon approaching their structural analysis. Inefficient sample preparation from conventional cellular expression systems is in many cases the first major bottleneck. Preparative scale cell-free expression has now become an emerging alternative tool for the high level production of integral membrane proteins. Many toxic effects attributed to the overproduction of recombinant proteins are eliminated by cell-free expression as viable host cells are no longer required. A unique characteristic is the open nature of cell-free systems that offers a variety of options to manipulate the reaction conditions in order to protect or to stabilize the synthesized recombinant proteins. Detergents or lipids can easily be supplemented and membrane proteins can therefore be synthesized directly into a defined hydrophobic environment of choice that permits solubility and allows the functional folding of the proteins. Alternatively, cell-free produced precipitates of membrane proteins can efficiently be solubilized in mild detergents after expression. Highly valuable for structural approaches is the fast and efficient cell-free production of uniformly or specifically labeled proteins. A considerable number of membrane proteins from diverse families like prokaryotic small multidrug transporters or eukaryotic G-protein coupled receptors have been produced in cell-free systems in high amounts and in functionally active forms. We will give an overview about the current state of the art of this new approach with special emphasis on technical aspects as well as on the functional and structural characterization of cell-free produced membrane proteins.  相似文献   

8.
9.
An ultimate goal for any protein production system is to express only the protein of interest without producing other cellular proteins. To date, there are only two established methods that will allow the successful expression of only the protein of interest: the cell-free in vitro protein synthesis system and the in vivo single-protein production (SPP) system. Although single-protein production can be achieved in cell-free systems, it is not easy to completely suppress the production of cellular proteins during the production of a protein of interest in a living cell. However, the finding of a unique sequence-specific mRNA interferase in Escherichia coli led to the development of the SPP system by converting living cells into a bioreactor that produces only a single protein of interest without producing any cellular proteins. This technology not only provides a new high expression system for proteins, but also offers a novel avenue for protein structural studies.  相似文献   

10.
The use of cell-free protein synthesis (CFPS) for recombinant protein production is emerging as an important technology. For example, the openness of the cell-free system allows control of the reaction environment to promote folding of disulfide bonded proteins in a rapid and economically feasible format. These advantages make cell-free protein expression systems particularly well suited for producing patient specific therapeutic vaccines or antidotes in response to threats from natural and man-made biological agents and for pharmaceutical proteins that are difficult to produce in living cells. In this work we assess the versatility of modern cell-free methods, optimize expression and folding parameters, and highlight the importance of rationally designed plasmid templates for producing mammalian secreted proteins, fusion proteins, and antibody fragments in our E. coli-based CFPS system. Two unique CFPS platforms were established by developing standardized extract preparation protocols and generic cell-free reaction conditions. Generic reaction conditions enabled all proteins to express well with the best therapeutic protein yield at 710 microg/mL, an antibody fragment at 230 microg/mL, and a vaccine fusion protein at 300 microg/mL; with the majority correctly folded. Better yields were obtained when cell-free reaction conditions were optimized for each protein. Establishing general CFPS platforms enhances the potential for cell-free protein synthesis to reliably produce complex protein products at low production and capital costs with very rapid process development timelines.  相似文献   

11.
One decade after the sequencing of the Plasmodium falciparum genome, 95% of malaria proteins in the genome cannot be expressed in traditional cell-based expression systems, and the targets of the best new leads for antimalarial drug discovery are either not known or not available in functional form. For a disease that kills up to 1 million people per year, routine expression of recombinant malaria proteins in functional form is needed both for the discovery of new therapeutics and for identification of targets of new drugs. We tested the general utility of cell-free systems for expressing malaria enzymes. Thirteen test enzyme sequences were reverse amplified from total RNA, cloned into a plant-like expression vector, and subjected to cell-free expression in a wheat germ system. Protein electrophoresis and autoradiography confirmed the synthesis of products of expected molecular masses. In rare problematic cases, truncated products were avoided by using synthetic genes carrying wheat codons. Scaled-up production generated 39 to 354 μg of soluble protein per 10 mg of translation lysate. Compared to rare proteins where cell-based systems do produce functional proteins, the cell-free yields are comparable or better. All 13 test products were enzymatically active, without failure. This general path to produce functional malaria proteins should now allow the community to access new tools, such as biologically active protein arrays, and lead to the discovery of new chemical functions, structures, and inhibitors of previously inaccessible malaria gene products.  相似文献   

12.
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14 h, including 8 h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).  相似文献   

13.
Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.  相似文献   

14.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

15.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

16.
Nanoparticles composed of amphiphilic scaffold proteins and small lipid bilayers are valuable tools for reconstitution and subsequent functional and structural characterization of membrane proteins. In combination with cell-free protein production systems, nanoparticles can be used to cotranslationally and translocon independently insert membrane proteins into tailored lipid environments. This strategy enables rapid generation of protein/nanoparticle complexes by avoiding detergent contact of nascent membrane proteins. Frequently in use are nanoparticles assembled with engineered derivatives of either the membrane scaffold protein (MSP) or the Saposin A (SapA) scaffold. Furthermore, several strategies for the formation of membrane protein/nanoparticle complexes in cell-free reactions exist. However, it is unknown how these strategies affect functional folding, oligomeric assembly and membrane insertion efficiency of cell-free synthesized membrane proteins.We systematically studied membrane protein insertion efficiency and sample quality of cell-free synthesized proteorhodopsin (PR) which was cotranslationally inserted in MSP and SapA based nanoparticles. Three possible PR/nanoparticle formation strategies were analyzed: (i) PR integration into supplied preassembled nanoparticles, (ii) coassembly of nanoparticles from supplied scaffold proteins and lipids upon PR expression, and (iii) coexpression of scaffold proteins together with PR in presence of supplied lipids. Yield, homogeneity as well as the formation of higher PR oligomeric complexes from samples generated by the three strategies were analyzed. Conditions found optimal for PR were applied for the synthesis of a G-protein coupled receptor. The study gives a comprehensive guideline for the rapid synthesis of membrane protein/nanoparticle samples by different processes and identifies key parameters to modulate sample yield and quality.  相似文献   

17.
By combining translation and membrane integration/translocation systems, we have constructed a novel cell-free system for the production of presecretory and integral membrane proteins in vitro. A totally defined, cell-free system reconstituted from a minimal number of translation factors was supplemented with urea-washed inverted membrane vesicles (U-INVs) prepared from Escherichia coli, as well as with purified proteins mediating membrane targeting of presecretory and integral membrane proteins. Initially, efficient membrane translocation of a presecretory protein (pOmpA) was obtained simply by the addition of only SecA and SecB. Proteinase K digestion clearly showed the successful translocation of pOmpA inside the vesicles. Next, integration of an inner membrane protein (MtlA) into U-INVs was achieved in the presence of only SRP (Ffh) and SR (FtsY). Finally, a membrane protein possessing a large periplasmic region (FtsQ) and therefore requiring both factors (SRP/SR and SecA/SecB) for membrane integration/translocation was also shown to be integrated correctly in this cell-free system. Thus, our novel cell-free system provides not only an efficient strategy for the production of membrane-related proteins but also an improved platform for the biological study of protein translocation and integration mechanisms.  相似文献   

18.
Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other’s inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield.  相似文献   

19.
20.
In this study, we describe a cell-free protein synthesis consolidated with polymerase chain reaction (PCR)-based synthetic gene assembly that allows for streamlined translation of genetic information. In silico-designed fragments of target genes were PCR-assembled and directly expressed in a cell-free synthesis system to generate functional proteins. This method bypasses the procedures required in conventional cell-based gene expression methods, integrates gene synthesis and cell-free protein synthesis, shortens the time to protein production, and allows for facile regulation of gene expression by manipulating the oligomer sequences used for gene synthesis. The strategy proposed herein expands the flexibility and throughput of the protein synthesis process, a fundamental component in the construction of synthetic biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号