首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration.  相似文献   

2.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   

3.
Wirth  C.  Schulze  E.-D.  Lühker  B.  Grigoriev  S.  Siry  M.  Hardes  G.  Ziegler  W.  Backor  M.  Bauer  G.  Vygodskaya  N.N. 《Plant and Soil》2002,242(1):41-63
Effects of fire and site type on carbon (C) and nitrogen (N) balances were determined by following the change of total and component C and N pools along four chronosequences of fire-prone Siberian Scots pine ecosystems. These differed in the mean return interval of surface fires (unburned – moderately burned, 40 years – heavily burned, 25 years) and site quality (lichen versus Vaccinium site type). Of the Vaccinium site type (higher site quality) only a moderately burned chronosequence was studied. A total of 22 even-aged stands were investigated with stand ages ranging from 2 to 383 years. The C balance was dominated by the opposing dynamics of coarse woody debris (CWD) and biomass and could be divided into three phases: (1) Young stands (up to 40 years)acted as a net source for C of 6-10 mol C m-2 year-1 because the previous generation CWD pool originating from stand-replacing crown fires decayed much faster than biomass increased. During this period the C pool in the unburned lichen type chronosequence decreased from 807 to 480 mol C m-2. (2) Middle aged stands (40-100 years) being in a stage of maximum biomass accumulation were a net sink of 8-10 mol C m-2 year-1. (3)Maturestands (100 to > 350 years) continued to sequester C at a lower rate (0.8-2.5mol C m-2 year-1). Differences in the rates of C sequestration during the two later phases could be explained by the complex interaction between surface fire regime and site type. Recurrent surface fires resulted in enhanced mortality and regularly redistributed C from the living to the CWD pool thereby lowering the rate of C sequestration. Site quality determined the potential to recover from disturbance by fire events. Differences in site type did not correlate with soil and total ecosystem N pool size. However, the N status of needles as well as the N pool of physiologically active tissue was highest in the stands of the Vaccinium type. The woody C pool (biomass + CWD) was sensitive to differences in surface fire regime and site type. It was lowest in the heavily burned lichen type chronosequence (297 ± 108 mol C m-2), intermediate in the unburned and moderately burned lichen type chronosequence (571 ± 179 mol C m-2) and highest in the moderately burned Vaccinium type chronosequence (810 ± 334 mol C m-2). In contrast, the total soil C pool (organic plus mineral layer down to a depth of 25 cm) was independent of stand age, surface fire regimeand site type and fluctuated around a value of 250 mol C m-2. The organic layer C pool oscillated in response to recurring surface fires and its C pool was dependent on time since fire increasing at a rate of about 1.5 mol C m-2 year-during the first 40 years and then reaching a plateau of 170 mol C m-2. The total ecosystem N pool was 7.4 ± 1.5 mol N m-2 on average of which only 25 % were stored in biomass or coarse woody debris. Total ecosystem N was independent of stand age, surface fire regime and site type. No correlation was found between total ecosystem C and N pools. Average total ecosystem C:N ratio was 114 ± 35 mol C mol N-1. A conceptual model illustrating how changes in the regime of stand-replacing crown fires and recurrent surface fires and changes in site quality interact in determining the long-term C balance in Siberian Scots pine forests is presented.  相似文献   

4.
The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night‐time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature–respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature–respiration relationship. A fundamental difference in air temperature‐based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6–2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R.  相似文献   

5.
The exchange of carbon dioxide (CO2) between the atmosphere and a forest after disturbance by wind throw in the western Russian taiga was investigated between July and October 1998 using the eddy covariance technique. The research area was a regenerating forest (400 m × 1000 m), in which all trees of the preceding generation were uplifted during a storm in 1996. All deadwood had remained on site after the storm and had not been extracted for commercial purposes. Because of the heterogeneity of the terrain, several micrometeorological quality tests were applied. In addition to the eddy covariance measurements, carbon pools of decaying wood in a chronosequence of three different wind throw areas were analysed and the decay rate of coarse woody debris was derived. During daytime, the average CO2 uptake flux was ?3 µmol m?2s?1, whereas during night‐time characterised by a well‐mixed atmosphere the rates of release were typically about 6 µmol m?2s?1. Suppression of turbulent fluxes was only observed under conditions with very low friction velocity (u* ≤ 0.08 ms?1). On average, 164 mmol CO2 m?2d?1 was released from the wind throw to the atmosphere, giving a total of 14.9 mol CO2 m?2 (180 g CO2 m?2) released during the 3‐month study period. The chronosequence of dead woody debris on three different wind throw areas suggested exponential decay with a decay coefficient of ?0.04 yr?1. From the magnitude of the carbon pools and the decay rate, it is estimated that the decomposition of coarse woody debris accounted for about a third of the total ecosystem respiration at the measurement site. Hence, coarse woody debris had a long‐term influence on the net ecosystem exchange of this wind throw area. From the analysis performed in this work, a conclusion is drawn that it is necessary to include into flux networks the ecosystems that are subject to natural disturbances and that have been widely omitted into considerations of the global carbon budget. The half‐life time of about 17 years for deadwood in the wind throw suggests a fairly long storage of carbon in the ecosystem, and indicates a very different long‐term carbon budget for naturally disturbed vs. commercially managed forests.  相似文献   

6.
Carbon sequestration in boreal jack pine stands following harvesting   总被引:2,自引:0,他引:2  
A large area of boreal jack pine (Pinus banksiana Lamb.) forest in Canada is recovering from clear‐cut harvesting, and the carbon (C) balance of these regenerating forests remains uncertain. Net ecosystem CO2 exchange was measured using the eddy‐covariance technique at four jack pine sites representing different stages of stand development: three postharvest sites (HJP02, HJP94, and HJP75) and one preharvest site (OJP). The four sites, located in the southern Canadian boreal forest, Saskatchewan, Canada, are typical of low productivity jack pine stands and were 2, 10, 29, and 90 years old in 2004, respectively. Mean annual net ecosystem production (NEP) for 2004 and 2005 was ?137±11, 19±16, 73±28, and 22±30 g C m?2 yr?1 at HJP02, HJP94, HJP75 and OJP, respectively, showing the postharvest jack pine stands to be moderate C sources immediately after harvesting, weak sinks at 10 years, moderate C sinks at 30 years, then weak C sinks at 90 years. Mean annual gross ecosystem photosynthesis (GEP) for the 2 years was 96±10, 347±20, 576±34, and 583±35 g C m?2 yr?1 at HJP02, HJP94, HJP75, and OJP, respectively. The ratio of annual ecosystem respiration (R) to annual GEP was 2.51±0.15, 0.95±0.04, 0.87±0.03, and 0.96±0.03. Seasonally, NEP peaked in May or June at all four sites but GEP and R were highest in July. R at a reference soil temperature of 10 °C, ecosystem quantum yield and photosynthetic capacity were lowest for the 2‐year‐old stand. R was most sensitive to soil temperature for the 90‐year‐old stand. The primary source of variability in NEP over the course of succession of the jack pine ecosystem following harvesting was stand age due to the changes in leaf area index. Intersite variability in GEP and R was an order of magnitude greater than interannual variability at OJP. For both young and old stands, GEP had greater interannual variability than R and played a more important role than R in interannual variation in NEP. Based on year‐round flux measurements from 2000 to 2005, the 10‐year stand had larger interannual variability in GEP and R than the 90‐year stand. Interannual variability in NEP was driven primarily by early‐growing‐season temperature and growing‐season length. Photosynthesis played a dominant role in the rapid rise in NEP early in stand development. Late in stand development, however, the subtle decrease in NEP resulted primarily from increasing respiration.  相似文献   

7.
采用开路式涡动相关法对北方针叶林连续2个生长季节(2007和2008年)的碳交换及其影响因素进行分析.结果表明:北方针叶林生态系统总生产力(GEP)、生态系统呼吸(Re)和净生态系统碳交换(NEE)在6月下旬到8月中旬的生长旺盛期达到最大值,但各峰值出现的日期并不一致.2007和2008年北方针叶林生长季的日均GEP、日均Re、日均NEE分别为19.45、15.15、-1.45 g CO2·m-2·d-1和17.67、14.11、-1.37 g CO2·m-2·d-1,2007年碳交换明显大于2008年,这可能是生长季较高的平均温度及光合有效辐射引起(2007年为12.46 ℃和697 μmol·m-2·s-1,2008年为11,04 ℃和639 μmol·m-2·s-1).北方针叶林的GEP与温度和光合有效辐射具有很好的相关性,其中与气温的相关系数接近0.55(P<0.01);Re主要受温度调控,相关系数为0.66~0.72(P<0,01);NEE与光合有效辐射相关性最大,相关系数为0.59~0.63 (P<0.01).  相似文献   

8.
Although mature black spruce forests are a dominant cover type in the boreal forest of North America, it is not clear how their carbon (C) budgets vary across the continent. The installation of an eddy covariance flux tower on an Old Black Spruce (OBS) site in eastern Canada (EOBS, Québec) provided a first opportunity to compare and contrast its annual (2004) and seasonal C exchange with two other pre-existing OBS flux sites from different climatic regions located in Saskatchewan [Southern OBS (SOBS)] and Manitoba [Northern OBS (NOBS)]. Although there was a relatively uniform seasonal pattern of net ecosystem productivity (NEP) among sites, EOBS had a lower total annual NEP than the other two sites. This was primarily because warmer soil under a thicker snowpack at EOBS appeared to increase winter C losses and low light suppressed both NEP and gross ecosystem productivity (GEP) in June. Across sites, greater total annual GEP and ecosystem respiration ( R ) were associated with greater mean annual air temperatures and an earlier beginning of the growing season. Also, GEP at all three sites showed a stronger relationship with air temperature in spring and early summer compared with later in the growing season, highlighting the importance of springtime conditions to the C budget of these boreal ecosystems. The three sites had different parameter estimates describing the responses of R and GEP at the half hour time scale to near surface temperature and light, respectively. On the other hand, the responses of both R and GEP to temperature at the monthly scale did not differ among sites. These results suggest that a general parameterization could be sufficient at coarse time resolutions to model the response of C exchange to environmental factors of mature black spruce forests from different climatic regions.  相似文献   

9.
BACKGROUND AND AIMS: Distinguishing between, and quantifying, the different components of ecosystem C fluxes is critical in predicting the responses of ecosystem C cycling to climate change. The aims of this study were to quantify the photosynthetic and respiratory fluxes of a 50-year-old Scots pine (Pinus sylvestris) ecosystem, and to distinguish respiration of branches with needles from that of stems, and that of soil. METHODS: The CO2 flux of the ecosystem was continuously measured using the eddy covariance (EC) method, and its components (respiration and photosynthesis of a branch with needles, stem and soil surface) were measured with an automated chamber system, from 2001 to 2004. KEY RESULTS: All values below are chamber based. The average temperature coefficient (Q10) of respiration was 2.7, 2.2 and 4.0, respectively, for branch (Rbran), stem (Rstem) and the soil surface (Rsoil). Respiration at a reference temperature of 15 degrees C (R15) was 1.27, 0.49 and 4.02 micromol CO2 m(-2) ground s(-1) for the three components, respectively. Over 4 years, the annual Rbran, Rstem and Rsoil ranged from 196 to 256, 56 to 83 and 439 to 598 g C m(-2) ground year(-1), respectively, with a 4-year average of 227, 72 and 507 g C m(-2) ground year(-1). Annual ecosystem respiration (Reco) was 731, 783, 909 and 751 g C m(-2) ground year(-1) in years 2001-2004, respectively, gross primary production (GPP) was 922, 1030, 1138 and 1001 g C m(-2) ground year(-1), and net ecosystem production (NEP) was 191, 247, 229 and 251 g C m(-2) ground year(-1). The average contribution of Rbran, Rstem and Rsoil to Reco was 29, 9 and 62 %, respectively. Overstorey photosynthesis accounted for 96 % of GPP. The average Reco/GPP ratio was 0.78. Net primary production (NPP) in the 4 years was 469, 581, 600 and 551 g C m(-2) year(-1), respectively, with the NPP/GPP ratio 0.54 averaged over the years. CONCLUSIONS: Respiration from the soil is the dominant component of ecosystem respiration. Differences between years in Reco were due to differences in temperature during the growing season. Rsoil was more sensitive to temperature than Rbran and Rstem, and differences in Rsoil were responsible for the differences in Reco between years.  相似文献   

10.
长白山阔叶红松林能量平衡和蒸散   总被引:1,自引:0,他引:1  
利用开路涡动相关系统的连续观测结果,分析了长白山阔叶红松林2008年能量平衡各分量和蒸散量的特征,并对生长季和非生长季能量各分量和蒸散量的差异进行了比较.结果表明:该观测系统能量闭合度为72%,处于国际同类观测的中等水平;能量各分量日、季差异显著,生长季森林生态系统最主要的能量支出项为潜热通量,约占可用能量的66%,非生长季最主要的能量支出项为感热通量,约占可用能量的63%.长白山阔叶红松林2008年蒸散量为484.7 mm,占同期降水量(558.9 mm)的87%,证实森林蒸散耗水是我国北方温带森林最主要的水分支出项.  相似文献   

11.
Global warming and changes in rainfall amount and distribution may affect soil respiration as a major carbon flux between the biosphere and the atmosphere. The objectives of this study were to investigate the site to site and interannual variation in soil respiration of six temperate forest sites. Soil respiration was measured using closed chambers over 2 years under mature beech, spruce and pine stands at both Solling and Unterlüß, Germany, which have distinct climates and soils. Cumulative annual CO2 fluxes varied from 4.9 to 5.4 Mg C ha?1 yr?1 at Solling with silty soils and from 4.0 to 5.9 Mg C ha?1 yr?1 at Unterlüß with sandy soils. With one exception soil respiration rates were not significantly different among the six forest sites (site to site variation) and between the years within the same forest site (interannual variation). Only the respiration rate in the spruce stand at Unterlüß was significant lower than the beech stand at Unterlüß in both years. Soil respiration rates of the sandy sites at Unterlüß were limited by soil moisture during the rather dry and warm summer 1999 while soil respiration at the silty Solling site tended to increase. We found a threshold of ?80 kPa at 10 cm depth below which soil respiration decreased with increasing drought. Subsequent wetting of sandy soils revealed high CO2 effluxes in the stands at Unterlüß. However, dry periods were infrequent, and our results suggest that temporal variation in soil moisture generally had little effect on annual soil respiration rates. Soil temperature at 5 cm and 10 cm depth explained 83% of the temporal variation in soil respiration using the Arrhenius function. The correlations were weaker using temperature at 0 cm (r2 = 0.63) and 2.5 cm depth (r2 = 0.81). Mean Q10 values for the range from 5 to 15 °C increased asymptotically with soil depth from 1.87 at 0 cm to 3.46 at 10 cm depth, indicating a large uncertainty in the prediction of the temperature dependency of soil respiration. Comparing the fitted Arrhenius curves for same tree species from Solling and Unterlüß revealed higher soil respiration rates for the stands at Solling than in the respective stands at Unterlüß at the same temperature. A significant positive correlation across all sites between predicted soil respiration rates at 10 °C and total phosphorus content and C‐to‐N ratio of the upper mineral soil indicate a possible effect of nutrients on soil respiration.  相似文献   

12.
We calculated carbon budgets for a chronosequence of harvested jack pine (Pinus banksiana Lamb.) stands (0‐, 5‐, 10‐, and~29‐year‐old) and a~79‐year‐old stand that originated after wildfire. We measured total ecosystem C content (TEC), above‐, and belowground net primary productivity (NPP) for each stand. All values are reported in order for the 0‐, 5‐, 10‐, 29‐, and 79‐year‐old stands, respectively, for May 1999 through April 2000. Total annual NPP (NPPT) for the stands (Mg C ha?1 yr?1±1 SD) was 0.9±0.3, 1.3±0.1, 2.7±0.6, 3.5±0.3, and 1.7±0.4. We correlated periodic soil surface CO2 fluxes (RS) with soil temperature to model annual RS for the stands (Mg C ha?1 yr?1±1 SD) as 4.4±0.1, 2.4±0.0, 3.3±0.1, 5.7±0.3, and 3.2±0.2. We estimated net ecosystem productivity (NEP) as NPPT minus RH (where RH was calculated using a Monte Carlo approach as coarse woody debris respiration plus 30–70% of total annual RS). Excluding C losses during wood processing, NEP (Mg C ha?1 yr?1±1 SD) for the stands was estimated to be ?1.9±0.7, ?0.4±0.6, 0.4±0.9, 0.4±1.0, and ?0.2±0.7 (negative values indicate net sources to the atmosphere.) We also calculated NEP values from the changes in TEC among stands. Only the 0‐year‐old stand showed significantly different NEP between the two methods, suggesting a possible mismatch for the chronosequence. The spatial and methodological uncertainties allow us to say little for certain except that the stand becomes a source of C to the atmosphere following logging.  相似文献   

13.
We used estimates of autotrophic respiration (RA), net primary productivity (NPP) and soil CO2 evolution (Sff), to develop component carbon budgets for 12‐year‐old loblolly pine plantations during the fifth year of a fertilization and irrigation experiment. Annual carbon use in RA was 7.5, 9.0, 15.0, and 15.1 Mg C ha?1 in control (C), irrigated (I), fertilized (F) and irrigated and fertilized (IF) treatments, respectively. Foliage, fine root and perennial woody tissue (stem, branch, coarse and taproot) respiration accounted for, respectively, 37%, 24%, and 39% of RA in C and I treatments and 38%, 12% and 50% of RA in F and IF treatments. Annual gross primary production (GPP=NPP+RA) ranged from 13.1 to 26.6 Mg C ha?1. The I, F, and IF treatments resulted in a 21, 94, and 103% increase in GPP, respectively, compared to the C treatment. Despite large treatment differences in NPP, RA, and carbon allocation, carbon use efficiency (CUE=NPP/GPP) averaged 0.42 and was unaffected by manipulating site resources. Ecosystem respiration (RE), the sum of Sff, and above ground RA, ranged from 12.8 to 20.2 Mg C ha?1 yr?1. Sff contributed the largest proportion of RE, but the relative importance of Sff decreased from 0.63 in C treatments to 0.47 in IF treatments because of increased aboveground RA. Aboveground woody tissue RA was 15% of RE in C and I treatments compared to 25% of RE in F and IF treatments. Net ecosystem productivity (NEP=GPP‐RE) was roughly 0 in the C and I treatments and 6.4 Mg C ha?1 yr?1 in F and IF treatments, indicating that non‐fertilized treatments were neither a source nor a sink for atmospheric carbon while fertilized treatments were carbon sinks. In these young stands, NEP is tightly linked to NPP; increased ecosystem carbon storage results mainly from an increase in foliage and perennial woody biomass.  相似文献   

14.
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000.  相似文献   

15.
This paper presents CO2 flux data from 18 forest ecosystems, studied in the European Union funded EUROFLUX project. Overall, mean annual gross primary productivity (GPP, the total amount of carbon (C) fixed during photosynthesis) of these forests was 1380 ± 330 gC m?2 y?1 (mean ±SD). On average, 80% of GPP was respired by autotrophs and heterotrophs and released back into the atmosphere (total ecosystem respiration, TER = 1100 ± 260 gC m?2 y?1). Mean annual soil respiration (SR) was 760 ± 340 gC m?2 y?1 (55% of GPP and 69% of TER). Among the investigated forests, large differences were observed in annual SR and TER that were not correlated with mean annual temperature. However, a significant correlation was observed between annual SR and TER and GPP among the relatively undisturbed forests. On the assumption that (i) root respiration is constrained by the allocation of photosynthates to the roots, which is coupled to productivity, and that (ii) the largest fraction of heterotrophic soil respiration originates from decomposition of young organic matter (leaves, fine roots), whose availability also depends on primary productivity, it is hypothesized that differences in SR among forests are likely to depend more on productivity than on temperature. At sites where soil disturbance has occurred (e.g. ploughing, drainage), soil espiration was a larger component of the ecosystem C budget and deviated from the relationship between annual SR (and TER) and GPP observed among the less‐disturbed forests. At one particular forest, carbon losses from the soil were so large, that in some years the site became a net source of carbon to the atmosphere. Excluding the disturbed sites from the present analysis reduced mean SR to 660 ± 290 gC m?2 y?1, representing 49% of GPP and 63% of TER in the relatively undisturbed forest ecosystems.  相似文献   

16.
Boreal forests are highly sensitive to climate and human impacts and therefore suitable as biological indicator for environmental changes. In this context, our study was aimed at getting deeper insight into the climate-dependence of the onset, intensity and end of wood formation of Scots pine during the growing season.We monitored the intra-annual growth dynamics of, on average, 42-year-old Scots pine trees over five consecutive years, 2000-2004, at two sites located 80 and 300 km south of the tree line in northern Finland. For that purpose, the cambium of the trees was weekly wounded with a pin and the resulting wound tissue, microscopically detectable in transverse thin-sections through the newly built wood, was taken as a time marker. During this 5-year study period, the intra-annual wood formation at the southern site was mainly positively associated with summer temperature. However, at the northern site such an association was either entirely missing or negative. At both sites, two thirds of the radial growth was produced within only 4 weeks from mid-June to mid-July, independent of whether the growing season started earlier or later.Moreover, we measured the widths of all tree rings from bark to pith (inter-annual growth) of the same study trees and assembled them to 51-year long tree-ring site chronologies. Since 1999, these two site chronologies - after having run fairly parallel over the preceding decades - were running in divergent directions thus corroborating our results derived from the intra-annual climate/growth analysis. Whereas the chronology of the southern site follows the average temperature of May and July very closely from 1961 up to 2004, the chronology of the northern site follows the July temperature, but only up to 1998, and from 1999 to 2004 is running just opposite to the distinctly rising July temperature. During the same period, there was - unlike in the years before - nearly no snow cover in May at the northern site, whereas at the southern site there was no change of the normally existing slight snow cover in May. This deviating weather situation may have led to a temperature-induced, temporary drought stress for the Scots pines at the northern site.  相似文献   

17.
We used eddy covariance and biomass measurements to quantify the carbon (C) dynamics of a naturally regenerated longleaf pine/slash pine flatwoods ecosystem in north Florida for 4 years, July 2000 to June 2002 and 2004 to 2005, to quantify how forest type, silvicultural intensity and environment influence stand‐level C balance. Precipitation over the study periods ranged from extreme drought (July 2000–June 2002) to above‐average precipitation (2004 and 2005). After photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD) >1.5 kPa and air temperature <10 °C were important constraints on daytime half‐hourly net CO2 exchange (NEEday) and reduced the magnitude of midday CO2 exchange by >5 μmol CO2 m?2 s?1. Analysis of water use efficiency indicated that stomatal closure at VPD>1.5 kPa moderated transpiration similarly in both drought and wet years. Night‐time exchange (NEEnight) was an exponential function of air temperature, with rates further modulated by soil moisture. Estimated annual net ecosystem production (NEP) was remarkably consistent among the four measurement years (range: 158–192 g C m?2 yr?1). In comparison, annual ecosystem C assimilation estimates from biomass measurements between 2000 and 2002 ranged from 77 to 136 g C m?2 yr?1. Understory fluxes accounted for approximately 25–35% of above‐canopy NEE over 24‐h periods, and 85% and 27% of whole‐ecosystem fluxes during night and midday (11:00–15:00 hours) periods, respectively. Concurrent measurements of a nearby intensively managed slash pine plantation showed that annual NEP was three to four times greater than that of the Austin Cary Memorial Forest, highlighting the importance of silviculture and management in regulating stand‐level C budgets.  相似文献   

18.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

19.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号