首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a companion report (Moss and Ward: J. Cell. Physiol 149:313-318, 1991) evidence was presented for multiple pathways for insulin internalization based on differences between the internalization of insulin and that of two other ligands, asialofetuin (Afet) and epidermal growth factor (EGF), in the presence of several perturbations of endocytosis. In the present study we have explored the characteristics of three internalization pathways and the contribution of each to overall insulin uptake. Freshly isolated hepatocytes were incubated with radiolabeled ligands in the presence of hyperosmolar sucrose, treatment that is thought to inhibit the coated pit pathway of endocytosis. Insulin internalization was decreased approximately 39%, but much greater decreases were observed with Afet (86%) and EGF (62%). Competition between uptake of radiolabeled and unlabeled insulin was observed in hyperosmolar-treated cells, suggestive of endocytosis by a receptor-mediated noncoated-pit pathway. Uptake of radiolabeled insulin that persisted in the presence of hyperosmolarity and high concentrations of unlabeled insulin suggested a third uptake pathway: fluid-phase endocytosis. A rate of fluid-phase endocytosis of 7.2 microL/hr/10(6) cells was determined from the uptake of the fluid-phase marker lucifer yellow. At high insulin concentrations (greater than or equal to 250 ng/ml), fluid-phase endocytosis appears to be the predominant pathway for insulin uptake, but at lower insulin concentrations (physiological) the coated pit and noncoated pit pathways are the primary routes for insulin internalization.  相似文献   

2.
The purpose of the present study was to further characterize the ethanol-induced impairments in hepatic endocytosis. Specifically, we examined the effects of ethanol treatment on receptor-ligand internalization via the coated and noncoated pit pathways. Insulin, epidermal growth factor (EGF) and asialoorosomucoid (ASOR) were used as model ligands to study internalization by isolated hepatocytes. ASOR and EGF are thought to be internalized strictly in coated pit regions of the cell membrane, while insulin may be internalized in both coated and uncoated membrane regions. Ethanol administration for 5-7 weeks decreased internalization of ASOR and EGF while internalization of insulin was unchanged during a single round of endocytosis of surface-bound ligand. Similarly, a more quantitative measure of endocytosis, the endocytic rate constant, was decreased for EGF and ASOR but not for insulin in livers of experimental rats. When endocytosis of Lucifer yellow, a fluorescent dye known to be internalized in the cell by fluid-phase endocytosis was examined, the initial rates of dye uptake were not significantly altered by alcohol administration. These results indicate that ethanol may selectively impair internalization occurring by coated pits while it has a minimal effect on initial uptake of molecules which are internalized by noncoated membrane regions.  相似文献   

3.
The relationships between receptor-mediated endocytosis and the generation of intracellular signals were analyzed in angiotensin II (AII)-stimulated adrenal glomerulosa cells. In cells equilibrated with 125I-AII analogs at 4 degrees C, specifically bound agonist but not antagonist AII derivatives were rapidly internalized at 37 degrees C. AII-induced internalization was not influenced by the presence or absence of extracellular Ca2+ but was inhibited by treatment with phenylarsine oxide (PAO) or by arresting coated pit formation with hypotonic shock and potassium depletion. Inhibition of internalization by PAO was prevented by the bifunctional sulfhydryl reagent dithiothreitol but only partially reversed by mercaptoethanol, and readdition of K+ restored internalization in K(+)-depleted cells. Treatment with PAO did not impair the initial AII-induced elevations of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and cytoplasmic calcium [( Ca2+]i) but reduced the sustained phase of the Ins(1,4,5)P3 response by 85% and abolished the second phase of the cytoplasmic Ca2+ response; these responses were restored by concomitant treatment with dithiothreitol. Inhibition of AII-receptor internalization by K+ depletion also caused selective loss of the sustained phase of the AII-induced Ca2+ response. Thus, blockade of AII-receptor internalization has similar effects as extracellular Ca2+ deficiency, which abolishes the sustained but not the early AII-induced increases in Ins(1,4,5)P3 production and [Ca2+]i. The close correlations between AII-induced internalization and the generation of Ins(1,4,5)P3 and [Ca2+]i responses suggest that endocytosis of the agonist-receptor complex is necessary to maintain the production of these intracellular signals. It is also possible that receptor-operated vesicular uptake of extracellular Ca2+ makes a significant contribution to the sustained [Ca2+]i responses of certain agonist-stimulated target cells.  相似文献   

4.
We present an analysis of receptor mediated endocytosis which includes the following elements: ligand binding to receptors, interaction of the ligand-receptor complex with coated pits, internalization of coated pit contents, recycling of receptors, and degradation of ligand. The model accounts quantitatively for epidermal growth factor binding and clustering in coated pits at 4°C, for its internalization and degradation at 37°C, and for EGF receptor down-regulation. Steady state analysis of the model indicates that the slope and intercept of a Scatchard plot are functions of the kinetic parameters of the endocytic loop and do not necessarily reflect the affinity and number of receptors in metabolically active cells. Moreover, the model predicts that for homogeneous receptors, a Scatchard plot can be either linear or nonlinear, depending on the concentration of proteins in coated pits which interact with ligand-receptor complexes. A slight generalization of the model in which phorbol ester-receptor complexes compete with EGF-receptor complexes for the same coated pit proteins provides a quantitative explanation for the loss of the high affinity portion of the EGF Scatchard plot subsequent to preincubation with phorbol esters. This explanation leads to the prediction of a local homology between a portion of the phorbol ester receptor sequence and a portion of the EGF receptor sequence.  相似文献   

5.
The involvement of Ral and its downstream molecules in receptor-mediated endocytosis was examined. Expression of either RalG23V or RalS28N, which are known to be constitutively active and dominantnegative forms, respectively, in A431 cells blocked internalization of epidermal growth factor (EGF). Stable expression of RalG23V or RalS28N in CHO-IR cells also inhibited internalization of insulin. Internalization of EGF and insulin was not affected by full-length RalBP1 which is an effector protein of Ral, but was inhibited by its C-terminal region which binds directly to Ral and POB1. POB1 is a binding protein of RalBP1 and has the Eps15 homology (EH) domain. Deletion mutants of POB1 inhibited internalization of EGF and insulin. However, internalization of transferrin was unaffected by Ral, RalBP1, POB1 and their mutants. Epsin and Eps15 have been reported to be involved in the regulation of endocytosis of the receptors for EGF and transferrin. The EH domain of POB1 bound directly to Epsin and Eps15. Taken together with the observation that EGF and insulin activate Ral, these results suggest that Ral, RalBP1 and POB1 transmit the signal from the receptors to Epsin and Eps15, thereby regulating ligand-dependent receptor-mediated endocytosis.  相似文献   

6.
Binding of murine epidermal growth factor (EGF) to its high-affinity receptor can be modulated by a variety of structurally unrelated mitogens. The transmodulation, however, is temperature-dependent and has not been observed in isolated membranes. We report here the transmodulation of high-affinity EGF receptors by platelet-derived growth factors (PDGF) and tumour-promoting phorbol esters in 3T3 cells even when they are rendered incapable of fluid-phase endocytosis by treatment with phenylarsine oxide or by permeabilization with lysophosphatidylcholine. The relative affinity of the EGF receptors in the absence of modulating agents is not significantly altered by phenylarsine oxide treatment. Thus the difference in affinity between the two classes of EGF receptors seems to be unrelated to dynamic membrane changes or to differential rates of internalization. In permeabilized cells, non-hydrolysable GTP analogues transmodulate the high-affinity EGF receptor; however, the effects of these analogues are blocked by the protein kinase C inhibitor chlorpromazine. In contrast, transmodulation by PDGF is not blocked by chloropromazine. Thus the high-affinity EGF receptor can be transmodulated by both protein kinase C-dependent or -independent pathways, and the transmodulation processes do not require fluid-phase endocytosis.  相似文献   

7.
Macrophages and B-lymphocytes express two major isoforms of Fc receptor (FcRII-B2 and FcRII-B1) that exhibit distinct capacities for endocytosis. This difference in function reflects the presence of an in-frame insertion of 47 amino acids in the cytoplasmic domain of the lymphocyte isoform (FcRII-B1) due to alternative mRNA splicing. By expressing wild type and mutant FcRII cDNAs in fibroblasts, we have now examined the mechanism by which the insertion acts to prevent coated pit localization and endocytosis. We first identified the region of the FcRII-B2 cytoplasmic domain that is required for rapid internalization. Using a biochemical assay for endocytosis and an immuno-EM assay to determine coated pit localization directly, we found that the distal half of the cytoplasmic domain, particularly a region including residues 18-31, as needed for coated pit-mediated endocytosis. Elimination of the tyrosine residues at position 26 and 43, separately or together, had little effect on coated pit localization and a partial effect on endocytosis of ligand. Since the FcRII-B1 insertion occurs in the membrane-proximal region of the cytoplasmic domain (residue 6) not required for internalization, it is unlikely to act by physically disrupting the coated pit localization determinant. In fact, the insertion was found to prevent endocytosis irrespective of its position in the cytoplasmic tail and appeared to selectively exclude the receptor from coated regions. Moreover, receptors bearing the insertion exhibited a temperature- and ligand-dependent association with a detergent-insoluble fraction and with actin filaments, perhaps in part explaining the inability of FcRII-B1 to enter coated pits.  相似文献   

8.
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system.  相似文献   

9.
Recently, we demonstrated that hydrogen peroxide (H2O2) inhibits the internalization of the epidermal growth factor (EGF) receptor and the EGF-induced mono-ubiquitination of EGF receptor pathway substrate clone #15 (Eps15) in fibroblasts. In addition, it was suggested that EGF receptor internalization might be inhibited by H2O2 by inhibition of ubiquitination of proteins involved in endocytosis. Here, we show that H2O2 also inhibits the poly-ubiquitination of the EGF receptor in fibroblasts. Furthermore, recovery of the cells resulted in re-establishment of ubiquitination of both the EGF receptor and Eps15 and coincided with restoration of internalization of those receptors that had bound EGF in the presence of H2O2. In addition, EGF receptor internalization was inhibited by the sulphydryl reagent N-ethylmaleimide (NEM), indicating that intact SH groups might be required for receptor-mediated endocytosis. Furthermore, H2O2 rapidly induced an increase in the cellular ratio of GSSG:GSH (oxidized glutathione:reduced glutathione) and removal of H2O2 resulted in a fast restoration of the ratio of GSSG:GSH. Therefore, these results suggest a relation between the inhibition of internalization ubiquitination and an increase in GSSG:GSH ratio, which strengthens the hypothesis that H2O2 inhibits EGF receptor internalization by an inhibition of ubiquitination of proteins involved in EGF receptor-mediated endocytosis.  相似文献   

10.
A Bansal  L M Gierasch 《Cell》1991,67(6):1195-1201
Peptides corresponding to the proposed coated pit internalization signal of the native low density lipoprotein receptor, NPVY, take up in aqueous solution a reverse-turn conformation with the Asn in position i and the Tyr in position i + 3. By contrast, peptides derived from receptors that are defective for endocytosis do not adopt the reverse turn. These internalization-defective receptors include those with a nonaromatic residue substituted for the Tyr and those with Asn----Ala or Pro----Ala substitutions. While the tendency of an Asn-Pro sequence to induce a reverse turn was anticipated, the structural importance of an aromatic residue in position i + 3 was not. The sequences associated with the internalization signal thus appear to play a critical conformational role that is required for endocytosis, probably by enabling binding to adaptor molecules. With the results presented in the accompanying paper on lysosomal acid phosphatase, we now have direct evidence for previous proposals of a general correlation of internalization signals with a turn conformational motif.  相似文献   

11.
We have developed a quantitative method to evaluate the interaction between cell surface receptors and the endocytic apparatus. This method exploits occupancy-dependent changes in internalization rates that occur in cells expressing high numbers of receptors. We found that constitutive internalization of the transferrin receptor behaves as a simple, first order process that is unaltered by ligand. Internalization of the epidermal growth factor (EGF) receptor, however, behaves as a saturable, second order process that is induced by receptor occupancy. Internalization of EGF receptors occurs through at least two distinct pathways: a low capacity pathway that has a relatively high affinity for occupied receptors, and a low affinity pathway that has a much higher capacity. The high affinity pathway was observed in all cells having receptors with intrinsic tyrosine kinase activity. Mutant EGF receptors lacking kinase activity could not utilize the high affinity pathway and were internalized only through the low affinity one. Mutated receptors with decreased affinity for kinase substrates were also internalized at decreased rates through the high affinity, inducible pathway. In the case of vitellogenin receptors in Xenopus oocytes, occupied receptors competed more efficiently for internalization than empty ones. Insulin increased the endocytic capacity of oocytes for vitellogenin receptors. Similarly, serum increased the capacity of the inducible pathway for EGF receptors in mammalian cells. These data are consistent with a model of internalization in which occupied receptors bind to specific cellular components that mediate rapid internalization. Ligand-induced internalization results from an increase in the affinity of occupied receptors for the endocytic apparatus. Hormones can also indirectly regulate endocytosis by increasing the number of coated pits or their rate of internalization. The ability to dissect receptor-specific effects from cell-specific ones should be very useful in investigating the molecular mechanisms of receptor mediated endocytosis.  相似文献   

12.
The patching and endocytosis of EGF (epidermal growth factor) bound to A-431 cells (a human epidermoid carcinoma line) are temperature-sensitive processes which are completely inhibited at 4 degrees C. Receptor-mediated endocytosis generally occurs through coated regions, and EGF bound to its membrane receptor must diffuse laterally to these points of internalization. In this work we investigated the thermal sensitivity of the lateral diffusion of EGF receptor complexes and the thermal sensitivity of the patching and endocytosis of the hormone receptor complexes. Using the fluorescence photobleach recovery technique, we measured the lateral diffusion coefficients of a fluorescent derivative of EGF as a function of temperature. The lateral diffusion coefficient (D) increased gradually from 2.8 X 10(-10) cm2/s at 5 degrees C to 8.5 X 10(-10) cm2/s at 37 degrees C, and no phase transition was detected. Neither was a phase transition detected when we measured the diffusion coefficient of fluorescent lipid probes over this temperature range. From a calculation of the collision frequency of the occupied EGF receptors with coated regions using our measured values of D at 5 and 37 degrees C, we conclude that diffusion is not the rate-limiting step for either endocytosis or patching.  相似文献   

13.
Morphological studies have indicated divergent pathways for the endocytosis of epidermal growth factor (EGF) and transferrin (Tf). In order to obtain biochemical evidence for the pathways associated with the endocytosis of EGF and Tf, a series of Percoll density gradients were employed to separate individual cellular components. Subcellular fractionation of murine fibroblasts exposed to a 2-min pulse of either 125I-Tf or 125I-EGF results in the detection of a total of six cellular compartments related to the internalization process of these ligands. The results of kinetic analysis of the entry of EGF into five membranous fractions is consistent with a model in which ligand is transferred sequentially from the plasma membrane through three distinct prelysosomal environments prior to reaching secondary lysosomes. Each prelysosomal compartment exhibits distinct density and temporal properties in a Percoll density gradient and may represent preexisting endocytic vesicles and/or specific domains of a continuous tubular structure, vesicularized during the process of cell disruption. In addition, the observed differential migration on Percoll density gradients of Tf and EGF containing compartments indicates that the majority of cell bound Tf segregates from EGF and enters a compartment lacking EGF within 5 min of internalization.  相似文献   

14.
The ligand-induced internalization of beta-adrenergic receptors and the receptor-mediated internalization of epidermal growth factor were blocked, under similar conditions, by phenylarsine oxide (PAO) in human astrocytoma cells (1321N1). The inhibition was not prevented or reversed by monofunctional sulfhydryl agents such as 2-mercaptoethanol or glutathione; however, the inhibitory action of PAO was blocked and reversed by bifunctional thiols such as 2,3-dimercaptoethanol or dithiothreitol. The results are consistent with the interaction of PAO with vicinal sulfhydryl groups to form a stabile ring structure. PAO did not prevent isoproterenol-induced uncoupling (desensitization) of beta-adrenergic receptors even though receptor internalization was completely blocked. The effects of PAO on receptor internalization could not be explained by any action of the trivalent arsenical to lower ATP levels. Ligand binding to both receptors was not detectably altered by PAO under conditions selective for inhibition for endocytosis. The results suggest a common mechanism for internalization of beta-adrenergic receptors and epidermal growth factor by a process that involves vicinal sulfhydryl groups.  相似文献   

15.
Selective enrichment of clathrin-coated membranes by anticlathrin immunoadsorption was used to examine the internalization of receptor-ligand complexes through coated pits. Using Staphylococcus aureus-anticlathrin antibody and [35S]methionine-labeled KB cells, the kinetics of association of the epidermal growth factor (EGF-R) and transferrin receptors (TF-R) with coated membranes were directly examined. The accumulation of EGF-R in coated pits at the cell surface was dependent upon EGF binding. EGF-R then passed sequentially through a compartment which did not react with anticlathrin antibody and a second clathrin-coated compartment. The EGF-R was degraded in lysosomes with a half-life of approximately 41-55 min. The tumor promoter, 4 beta-phorbol 12-myristate 13-acetate, appears to mimic the action of EGF in inducing EGF-R accumulation in coated pits at the cell surface and receptor internalization. In contrast to the results with EGF-R, the TF-R was found in clathrin-coated membranes in the presence or absence of TF, and the concentration of TF-R in clathrin-coated membranes did not significantly change with time. The method presented should be of great utility for examining the biochemical changes that occur during the receptor-mediated endocytosis and sorting of ligands and receptors.  相似文献   

16.
To identify proteins that participate in clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR), 13 endocytic proteins were depleted in HeLa cells using highly efficient small interfering RNAs that were designed using a novel selection algorithm. The effects of small interfering RNAs on the ligand-induced endocytosis of EGFR were compared with those effects on the constitutive internalization of the transferrin receptor. The knock-downs of clathrin heavy chain and dynamin produced maximal inhibitory effects on the internalization of both receptors. Depletion of alpha, beta2, or micro2 subunits of AP-2 reduced EGF and transferrin internalization rates by 40-60%. Down-regulation of several accessory proteins individually had no effect on endocytosis but caused significant inhibition of EGF and transferrin endocytosis when the homologous proteins were depleted simultaneously. Surprisingly, knockdown of clathrin-assembly lymphoid myeloid leukemia protein, CALM, did not influence transferrin endocytosis but considerably affected EGFR internalization. Thus, CALM is the second protein besides Grb2 that appears to play a specific role in EGFR endocytosis. This study demonstrates that the efficient gene silencing by rationally designed small interfering RNA can be used as an approach to functionally analyze the entire cellular machineries, such as the clathrin-coated pits and vesicles.  相似文献   

17.
Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.  相似文献   

18.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

19.
The endocytosis pathways of particles with terminal beta-D-galactosyl groups were studied in isolated rat Kupffer cells by electron microscopy. Colloidal gold particles of sizes 5, 17 and 50 nm were coated with asialofetuin (ASF) and isolated liver macrophages were allowed to bind (at 4 degrees C) or take up (at 37 degrees C) these ligands. Particles of all three sizes were bound via the galactose-particle receptor as shown by carbohydrate inhibition experiments and were ingested effectively. But, whereas ASF-gold particles of sizes 5 and 17 nm are taken up via the coated pit/coated vesicle pathway, the 50 nm particles are not. These enter the cell via non-coated endocytic vacuoles. All three particle sizes are transported to the same lysosomal compartment. These observations demonstrate that at least in macrophages one receptor is capable to mediate endocytosis via two different pathways depending on ligand size and/or valency.  相似文献   

20.
A distribution of EGF receptor and clathrin during EGF endocytosis in A431, HER14, WT and PURO cell lines was studied by indirect immunofluorescence. Though the initial distribution of EGF-receptors on A431 and HER14 cells was somewhat different, the late stages of endocytosis proceeded equally and were marked by formation of bright spots in the juxtanuclear region characteristic of the late endosomes. The Src-family kinase inhibitor CGP77675 had no influence on the dynamics of receptor endocytosis at the immunofluorescent level in both cell lines. Stimulation of EGF-receptor endocytosis in A431 cells did not also result in any redistribution of clathrin in the areas where the majority of EGF-receptors are localized, i.e. in the lateral plasma membrane both in the control cells and under CGP77675 treatment. Clathrin in A431, WT and PURO cells demonstrated even a punctuated pattern throughout the cytoplasm with some accumulation in the juxtanuclear region. This distribution depended neither on the absence or presence of Src activity nor on EGF addition. The data obtained indicate that 1) EGF-receptors do not serve as the initiation sites during clathrin coated pit assembly; 2) Src-kinase activation does not result in significant clathrin redistribution in the plasma membrane, and its influence on EGF endocytosis can be considered as a secondary effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号