首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The Na/Ca-K exchanger (NCKX) is a polytopic membrane protein that plays a critical role in Ca(2+) homeostasis in retinal rod and cone photoreceptors. The NCKX1 isoform is found in rods, while the NCKX2 isoform is found in cones, in retinal ganglion cells, and in various parts of the brain. The topology of the Na/Ca-K exchanger is thought to consist of two large hydrophilic loops and two sets of transmembrane spanning segments (TMs). The first large hydrophilic loop is located extracellularly at the N-terminus; the other is cytoplasmic and separates the two sets of TMs. The TMs consist of either five and five membrane spanning helices or five and six membrane spanning helices, depending upon the predictive algorithm used. Little specific information is yet available on the orientation of the various membrane spanning helices and the localization of the short loops connecting these helices. In this study, we have determined which of the connecting loops are exposed to the extracellular milieu using two different methods: accessibility of substituted cysteine residues and insertion of N-glycosylation sites. The two methods resulted in a consistent NCKX topology in which the two sets of TMs each contain five membrane spanning helices. Our new model places what was previously membrane spanning helix six in the cytoplasm, which places the C-terminus on the extracellular surface. Surprisingly, this NCKX topology model is different from the current NCX topology model with respect to the C-terminal three membrane helices.  相似文献   

2.
The transport stoichiometry is an essential property of antiporter and symporter transport proteins. In this study, we determined the transport stoichiometry of the retinal cone potassium-dependent Na/Ca exchanger (NCKX) expressed in sodium-loaded cultured insect cells. The Na/Ca and Rb/Ca coupling ratios were obtained by direct measurements of the levels of (86)Rb and (45)Ca uptake and sodium release associated with reverse Na/Ca exchange. Rb/Ca coupling ratios of 0.98 [standard deviation (SD) of 0.12, 15 observations] and 0.92 (SD of 0.12, 13 observations) were obtained for the chicken and human retinal cone NCKX, respectively. Na/Ca coupling ratios of 4.11 (SD of 0.24, 10 observations) and 3.98 (SD of 0.34, 15 observations) were obtained for the chicken and human retinal cone NCKX, respectively, whereas a lower average coupling ratio of 3.11 (SD of 0.34, 10 observations) was obtained with cells expressing the bovine Na/Ca exchanger (NCX1). These results are consistent with a 4Na/1Ca + 1K stoichiometry for retinal cone NCKX. High Five cells expressing full-length dolphin rod NCKX, Caenorhabditis elegans NCKX, or bovine rod NCKX from which the two large hydrophilic loops were removed all showed a significant calcium-dependent (86)Rb uptake, whereas no calcium-dependent (86)Rb uptake was observed in cells expressing bovine NCX1. The calcium dependence of (45)Ca uptake yielded values between 1 and 2.5 microM for the external calcium dissociation constant of the different NCKX proteins studied here.  相似文献   

3.
In the dark, rod photoreceptors sustain a continuous influx of Na and Ca ions through the cGMP-gated channels of the rod outer segments (ROS). Whereas Na ions are extruded in the inner segment by the Na-pump, Ca ions are extruded already in the ROS by Na/Ca-K exchange. Our previous findings indicate that in the ROS plasma membrane, exchanger and channel form a complex of two exchangers associated per channel. Here, we report evidence of a novel regulatory mechanism of the dimerized exchanger, based on the following findings: (1), thiol-specific cross-linking with dimaleimides resulted in an increase of the Na/Ca-K exchange activity which correlated with the size of the cross-linking reagent, i.e., with increasing separation of the monomers in a dimerized exchanger; (2), partial proteolysis of the exchanger also increased the exchange rate by about a factor of two; (3), disintegration of the channel-exchanger complex by solubilization of the ROS membranes and preparation of proteoliposomes resulted in a twofold enhancement of the exchange rate; however (4), partial proteolysis of proteoliposomes, in which the exchanger molecules exist as monomers, did not result in any enhancement of the exchange rate. These findings suggest an inhibitory protein domain at the contact site of the dimerized exchanger. The physiological implication of this inference will be discussed in terms of a potential allosteric regulation of the exchanger in the channel-exchanger complex.  相似文献   

4.
The intracellular Ca(2+) concentration in rod outer segments of vertebrate photoreceptors is controlled by Ca(2+) influx through cGMP-gated channels and by Ca(2+) efflux driven by Na/Ca-K exchangers. Previously, we suggested that channel and exchanger are associated (Bauer, P. J., and Drechsler, M. (1992) J. Physiol. (Lond. ) 451, 109-131). This suggestion has been thoroughly examined using a variety of biochemical approaches. First, we took advantage of the fact that cGMP-gated channels bind calmodulin (CaM). Using CaM affinity chromatographic purification of the channel in 10 mm CHAPS, a significant fraction of exchanger was co-eluted with the channel indicating a binding affinity between channel and exchanger. Binding of channel and exchanger was examined more directly by cross-linking of proteins in the rod outer segment membranes. Activation of the channel with cyclic 8-bromo-GMP lead to exposure of a cysteine, which allowed cross-linking of the channel to the exchanger with the thiol-specific reagent dl-1,4-bismaleimido-2,3-butanediol. Cleavage of the cross-links and electrophoretic analysis indicated that a cross-link between the alpha-subunit of the channel and the exchanger formed. Furthermore, a cross-link between two adjacent alpha-subunits of the channel was found, suggesting that the alpha-subunits of the native channel are dimerized. Further support for an interaction between alpha-subunit and exchanger was obtained by in vitro experiments. Specific binding of the exchanger to the alpha-subunit but not to the beta-subunit of the channel was observed in Western blots of purified channel incubated with purified exchanger. This study suggests that two exchanger molecules bind to one cGMP-gated channel and, more specifically, that binding of exchanger molecules occurs at the alpha-subunits, which in the native channel are dimerized. The implications of these findings regarding the possibility of local Ca(2+) signaling in vertebrate photoreceptors will be discussed.  相似文献   

5.
6.
Guennoun S  Horisberger JD 《FEBS letters》2002,513(2-3):277-281
The accessibility of the residues of the sixth transmembrane segment (TM) of the Bufo marinus Na,K-ATPase alpha subunit was explored by cysteine scanning mutagenesis. Methanethiosulfonate reagents reached only the two most extracellular positions (T803, D804) in the native conformation of the Na,K-pump. Palytoxin induced a conductance in all mutants, including D811C, T814C and D815C which showed no active electrogenic transport. After palytoxin treatment, four additional positions (V805, L808, D811 and M816) became accessible to the sulfhydryl reagent. We conclude that one side of the sixth TM helix forms a wall of the palytoxin-induced channel pore and, probably, of the cation pathway from the extracellular side to one of their binding sites.  相似文献   

7.
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.  相似文献   

8.
The functional roles of Tyr771, Thr772, and Asn776 in the fifth transmembrane segment of the Na, K-ATPase alpha subunit were studied using site-directed mutagenesis, expression, and kinetics analysis. Nonconservative replacements Thr772Tyr and Asn776Ala led to reduced Na,K-ATPase turnover. Replacements at these positions (Asn776Ala, Thr772Leu, and Thr772Tyr) also led to high Na-ATPase activity (in the absence of K+). However, Thr772- and Asn776-substituted enzymes showed only small alterations in the apparent Na+ and K+ affinities (K1/2 for Na,K-ATPase activation). Thus, the high Na-ATPase activity does not appear related to cation-binding alterations. It is probably associated with conformational alterations which lead to an acceleration of enzyme dephosphorylation by Na+ acting at the extracellular space (Argüello et al. J. Biol. Chem. 271, 24610-24616, 1996). Nonconservative substitutions at position 771 (Tyr771Ala and Tyr771Ser) produced a significant decrease of enzyme turnover. Enzyme-Na+ interaction was greatly changed in these enzymes, while their activation by K+ did not appear affected. Although the Na+ K1/2 for Na,K-ATPase stimulation was unchanged (Tyr771Ala, Tyr771Ser), the activation by this cation showed no cooperativity (Tyr771Ala, nHill = 0.75; Tyr771Ser, nHill = 0.92; Control, nHill = 2.28). Substitution Tyr771Phe did not lead to a significant reduction in the cooperativity of the ATPase Na+ dependence (nHill = 1.91). All Tyr771-substituted enzymes showed low steady-state levels of phosphoenzyme during Na-activated phosphorylation by ATP. Phosphorylation levels were not increased by oligomycin, although the drug bound and inactivated Tyr771-substituted enzymes. No E1 left and right arrow E2 equilibrium alterations were detected using inhibition by vanadate as a probe. The data suggest that Tyr771 might play a central role in Na+ binding and occlusion without participating in K+-enzyme interactions.  相似文献   

9.
Guennoun S  Horisberger JD 《FEBS letters》2000,482(1-2):144-148
To study the structure of the pathway of cations across the Na, K-ATPase, we applied the substituted cysteine accessibility method to the putative 5th transmembrane segment of the alpha subunit of the Na,K-ATPase of the toad Bufo marinus. Only the most extracellular amino acid position (A(796)) was accessible from the extracellular side in the native Na,K-pump. After treatment with palytoxin, six other positions (Y(778), L(780), S(782), P(785), E(786) and L(791)), distributed along the whole length of the segment, became readily accessible to a small-size methanethiosulfonate compound (2-aminoethyl methanethiosulfonate). The accessible residues are not located on the same side of an alpha-helical model but the pattern of reactivity would rather suggest a beta-sheet structure for the inner half of the putative transmembrane segment. These results demonstrate the contribution of the 5th transmembrane segment to the palytoxin-induced channel and indicate which amino acid positions are exposed to the pore of this channel.  相似文献   

10.
11.
The retinal rod Na/Ca-K exchanger (NCKX) is a unique calcium extrusion protein utilizing both inward sodium gradient and outward potassium gradient. Three mammalian rod NCKX cDNAs have been cloned to date, but quantitative analysis of NCKX function in heterologous systems has proven difficult. Here, we describe a simple system for quantitative analysis of NCKX function; stable transformation of cultured insect cells with the novel pEA1/153A vector containing NCKX cDNAs was combined with measurements of potassium-dependent (45)Ca uptake in sodium-loaded cells. We carried out structure-function studies on NCKX with the following results: 1) two-thirds of the full-length sequence of bovine NCKX could be deleted without affecting potassium-dependent calcium transport and without affecting key properties of the potassium binding site; 2) the affinity of NCKX for potassium was about 10-fold greater in choline medium when compared with lithium medium; this shift was observed in rod outer segments or in cells expressing full-length rod NCKX, the above deletion mutant, or a distantly related NCKX paralog cloned from Caenorhabditis elegans. We conclude that the potassium binding site is highly conserved among members of the NCKX family and is formed by residues located within the two sets of transmembrane spanning segments in the NCKX sequence.  相似文献   

12.
《Journal of Physiology》1998,92(3-4):269-274
Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor has revealed a highly-differentiated α-helical structure. Lipid-facing residues are distinguished from a patch of residues which selectively stabilise the ground state of the receptor, and from a band of amino acids extending the full length of the helix, which contribute to the active agonist-receptor-G protein complex. The most important residues are strongly conserved in the GPCR superfamily.  相似文献   

13.
The human dopamine (DA) transporter (hDAT) contains multiple tryptophans and acidic residues that are completely or highly conserved among Na(+)/Cl(-)-dependent transporters. We have explored the roles of these residues using non-conservative substitution. Four of 17 mutants (E117Q, W132L, W177L and W184L) lacked plasma membrane immunostaining and were not functional. Both DA uptake and cocaine analog (i.e. 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane, CFT) binding were abolished in W63L and severely damaged in W311L. Four of five aspartate mutations (D68N, D313N, D345N and D436N) shifted the relative selectivity of the hDAT for cocaine analogs and DA by 10-24-fold. In particular, mutation of D345 in the third intracellular loop still allowed considerable [(3)H]DA uptake, but caused undetectable [(3)H]CFT binding. Upon anti-C-terminal-hDAT immunoblotting, D345N appeared as broad bands of 66-97 kDa, but this band could not be photoaffinity labeled with cocaine analog [(125)I]-3beta-(p-chlorophenyl)tropane-2beta-carboxylic acid ([(125)I]RTI-82). Unexpectedly, in this mutant, cocaine-like drugs remained potent inhibitors of [(3)H]DA uptake. CFT solely raised the K(m) of [(3)H]DA uptake in wild-type hDAT, but increased K(m) and decreased V(max) in D345N, suggesting different mechanisms of inhibition. The data taken together indicate that mutation of conserved tryptophans or acidic residues in the hDAT greatly impacts ligand recognition and substrate transport. Additionally, binding of cocaine to the transporter may not be the only way by which cocaine analogs inhibit DA uptake.  相似文献   

14.
15.
Proline residues occur frequently in transmembrane alpha helices, which contrasts with their behaviour as helix-breakers in water-soluble proteins. The three membrane-embedded proline residues of bacteriorhodopsin have been replaced individually by alanine and glycine to give P50A, or P50G on helix B, P91A, or P91G on helix C, and P186A or P186G on helix F, and the effect on the protein folding kinetics has been investigated. The rate-limiting apoprotein folding step, which results in formation of a seven transmembrane, alpha helical state, was slower than wild-type protein for the Pro50 and Pro91 mutants, regardless of whether they were mutated to Ala or Gly. These proline residues give rise to several inter-helix contacts, which are therefore important in folding to the seven transmembrane helix state. No evidence for cis-trans isomerisations of the peptidyl prolyl bonds was found during this rate-limiting apoprotein folding step. Mutations of all three membrane-embedded proline residues affected the subsequent retinal binding and final folding to bacteriorhodopsin, suggesting that these proline residues contribute to formation of the retinal binding pocket within the helix bundle, again via helix/helix interactions. These results point to proline residues in transmembrane alpha helices being important in the folding of integral membrane proteins. The helix/helix interactions and hydrogen bonds that arise from the presence of proline residues in transmembrane alpha helices can affect the formation of transmembrane alpha helix bundles as well as cofactor binding pockets.  相似文献   

16.
We place 15N nuclear magnetic resonance relaxation analysis and functional mutagenesis studies in the context of our previous structural and mutagenesis work to correlate structure, dynamics and function for the seventh transmembrane segment of the human Na+/H+ exchanger isoform 1. Although G261-S263 was previously identified as an interruption point in the helical structure of this isolated transmembrane peptide in dodecylphosphocholine micelles, and rapid conformational exchange was implicated in the NOE measurements, the six 15N labelled residues examined in this study all have similar dynamics on the ps-ns time scale. A mathematical model incorporating chemical exchange is the best fit for residues G261, L264, and A268. This implies that a segment of residues from G261 to A268 samples different conformations on the μs-ms time scale. Chemical exchange on an intermediate time scale is consistent with an alternating-access cycle where E262 is bent away from the cytosol during proton translocation by the exchanger. The functional importance of chemical exchange at G261-A268 is corroborated by the abrogated activity of the full-length exchanger with the bulky and restricting Ile substitutions F260I, G261I, E262I, S263I, and A268I.  相似文献   

17.
Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger   总被引:1,自引:0,他引:1  
Hydropathy analysis predicts 11 transmembrane helices in the cardiac Na+/Ca2+ exchanger. Using cysteine susceptibility analysis and epitope tagging, we here studied the membrane topology of the exchanger, in particular of the highly conserved internal alpha-1 and alpha-2 repeats. Unexpectedly, we found that the connecting loop in the alpha-1 repeat forms a re-entrant membrane loop with both ends facing the extracellular side and one residue (Asn-125) being accessible from the inside and that the region containing the alpha-2 repeat is mostly accessible from the cytoplasm. Together with other data, we propose that the exchanger may consist of nine transmembrane helices.  相似文献   

18.
The Na(+)/dicarboxylate co-transporter, NaDC-1, couples the transport of sodium and Krebs cycle intermediates, such as succinate and citrate. Previous studies identified two functionally important amino acids, Glu-475 and Cys-476, located in transmembrane domain (TMD) 9 of NaDC-1. In the present study, each amino acid in TMD-9 was mutated to cysteine, one at a time, and the accessibility of the membrane-impermeant reagent [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) to the replacement cysteines was determined. Cysteine substitution was tolerated at all but five of the sites: the A461C mutant was not present at the plasma membrane, whereas the F473C, T474C, E475C, and N479C mutants were inactive proteins located on the plasma membrane. Cysteine substitution of four residues found near the extracellular surface of TMD-9 (Ser-478, Ala-480, Ala-481, and Thr-482) resulted in proteins that were sensitive to inhibition by MTSET. The accessibility of MTSET to the four substituted cysteines was highest in the presence of the transported cations, sodium or lithium, and low in choline. The four mutants also exhibited substrate protection of MTSET accessibility. The MTSET accessibility to S478C, A481C, and A480C was independent of voltage. In contrast, T482C was more accessible to MTSET in choline buffer at negative holding potentials, but there was no effect of voltage in sodium buffer. In conclusion, TMD-9 may be involved in transducing conformational changes between the cation-binding sites and the substrate-binding site in NaDC-1, and it may also form part of the translocation pathway through the transporter.  相似文献   

19.
The Na(+)/H(+) exchanger isoform 1 is an integral membrane protein that regulates intracellular pH by exchanging one intracellular H(+) for one extracellular Na(+). It is composed of an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the structural and functional aspects of the critical transmembrane segment VII (TM VII, residues 251-273) by using alanine scanning mutagenesis and high resolution NMR. Each residue of TM VII was mutated to alanine, the full-length protein expressed, and its activity characterized. TM VII was sensitive to mutation. Mutations at 13 of 22 residues resulted in severely reduced activity, whereas other mutants exhibited varying degrees of decreases in activity. The impaired activities sometimes resulted from low expression and/or low surface targeting. Three of the alanine scanning mutant proteins displayed increased, and two displayed decreased resistance to the Na(+)/H(+) exchanger isoform 1 inhibitor EMD87580. The structure of a peptide of TM VII was determined by using high resolution NMR in dodecylphosphocholine micelles. TM VII is predominantly alpha-helical, with a break in the helix at the functionally critical residues Gly(261)-Glu(262). The relative positions and orientations of the N- and C-terminal helical segments are seen to vary about this extended segment in the ensemble of NMR structures. Our results show that TM VII is a critical transmembrane segment structured as an interrupted helix, with several residues that are essential to both protein function and sensitivity to inhibition.  相似文献   

20.
The Na,K-ATPase generates electrochemical gradients that are used to drive the coupled transport of many ions and nutrients across the plasma membrane. The functional enzyme is comprised of an alpha and beta subunit and families of isoforms for both subunits exist. Recent studies in this laboratory have identified a biological role for the Na,K-ATPase alpha4 isoform in sperm motility. Here we further investigate the role of the Na,K-ATPase carrying the alpha4 isoform, showing again that ouabain eliminates sperm motility, and in addition, that nigericin, a H+/K+ ionophore, and monensin, a H+/Na+ ionophore, reinitiate motility. These data, along with the observation that the K+ ionophore valinomycin has no effect on the motility of ouabain-inhibited sperm, suggest that ouabain may change intracellular H+ levels in a manner that is incompatible with sperm motility. We have also localized NHE1 and NHE5, known regulators of intracellular H+ content, to the same region of the sperm as the Na,K-ATPase alpha4 isoform. These data highlight the important role of the Na,K-ATPase alpha4 isoform in regulating intracellular H(+) levels, and provide evidence suggesting the involvement of the Na+/H+ exchanger, which is critical for maintaining normal sperm motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号