首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Glucose limited growth of a respiratory deficient mutant of Saccharomyces cerevisiae was studied in continuous culture under steady state conditions. The maximal growth rate, the Michaelis constant, the cell yield, the maintenance coefficient and the ethanol yield of the growing cell population were determined. The steady state concentrations of cells, glucose and ethanol were measured as functions of the dilution rate and compared with theoretical predictions. A far-reaching agreement between theory and experiment was observed. The decrease of the cell yield in the range of low dilution rates is well explained by introducing the concept of maintenance energy in the general theory of continuous cultures. A deviation of the cell yield from the predicted values, which has been found in the range of high dilution rates, is discussed.  相似文献   

2.
In some biotechnological processes like wastewater treatment and biotransformation, substances are involved which are inhibitory or even toxic to the microorganisms. Their presence changes the cell physiology or even acts lethal on the cells so that the process breaks down completely. For studying such processes, a two‐stage continuous‐flow stirred tank reactor (CSTR) cascade was developed where the toxic substance is only supplied to the second reactor. Mathematical modeling of the system showed that identical steady‐state conditions can be established in both bioreactors of the two‐stage CSTR cascade when the dilution rate of the second reactor is twice as high as the dilution rate in the first reactor, provided that both reactors are fed with the same culture medium and possess an identical working volume. The theoretically derived concept was verified by cultivating Saccharomyces cerevisiae CBS 8066 under glucose‐limited aerobic conditions. Independently of the dilution rates established (D1 in the range of 0.26 to 0.38 h–1 and D2 = 2·D1), the steady‐state values of the biomass, glucose and ethanol concentration were almost identical in both reactors. Moreover, the dynamic behavior after each stepwise change of the dilution rates was also identical in both reactors, which was detected by dissolved‐oxygen measurements. Finally, the system was applied to the whole‐cell biotransformation of ethyl 2‐chloro‐3‐oxo‐butanoate as an example.  相似文献   

3.
Compared with steady state, oscillation in continuous very-high-gravity ethanol fermentation with Saccharomyces cerevisiae improved process productivity, which was thus introduced for the fermentation system composed of a tank fermentor followed by four-stage packed tubular bioreactors. When the very-high-gravity medium containing 280 g l−1 glucose was fed at the dilution rate of 0.04 h−1, the average ethanol of 15.8% (v/v) and residual glucose of 1.5 g l−1 were achieved under the oscillatory state, with an average ethanol productivity of 2.14 g h−1 l−1. By contrast, only 14.8% (v/v) ethanol was achieved under the steady state at the same dilution rate, and the residual glucose was as high as 17.1 g l−1, with an ethanol productivity of 2.00 g h−1 l−1, indicating a 7% improvement under the oscillatory state. When the fermentation system was operated under the steady state at the dilution rate of 0.027 h−1 to extend the average fermentation time to 88 h from 59 h, the ethanol concentration increased slightly to 15.4% (v/v) and residual glucose decreased to 7.3 g l−1, correspondingly, but the ethanol productivity was decreased drastically to 1.43 g h−1 l−1, indicating a 48% improvement under the oscillatory state at the dilution rate of 0.04 h−1.  相似文献   

4.
A process for the stereospecific reduction of acetoacetic acid esters to the 3-(S)-hydroxy-butanoic acid esters by the yeasts Saccharomyces cerevisiae and Candida utilis grown on glucose and ethanol media was developed. A continuous single stage steady state production system was found to be superior to pulse-, batch- and fed-batch systems in terms of optical product purity, biomass concentration and production rates.

Optical purity of 3-(S)-hydroxybutanoic acid esters produced with Saccharomyces cerevisiae and Candida utilis was dependent on pH. A maximal optical purity was obtained at pH2.2 from S. cerevisiae growing on ethanol medium. The specific product formation rate of the chemostat cultures was 0.02…0.05 gg?1 h?1. C. utilis was more productive than S. cerevisiae but it reconsumed the product under carbon limited growth conditions.  相似文献   

5.
Summary The influence of the growth rate on the accumulation of ergosterol inSaccharomyces cerevisiae was studied with glucose and ethanol as substrates under P-limitation in chemostat experiments. In cultures with glucose as carbon source a decrease in ergosterol content with dilution rates up to 0.08 h–1 was observed, whereas above this dilution rate an increase in ergosterol content occurred. Similar but less marked effects were attained with ethanol as carbon source. A maximum specific rate of ergosterol synthesis of about 2.4 mg per h and g dry cell mass was calculated for phosphorus limited cultures.  相似文献   

6.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

7.
Anaerobic fermentation of glucose (20 g/l) by Saccharomyces cerevisiae CBS 8066 was studied in a chemostat (dilution rate = 0.05–0.25 h–1) at different concentrations of the nitrogen source (5.00 g/l or 0.36 g/l ammonium sulphate). The ethanol yield (g ethanol produced/g glucose consumed) was found to be higher and the glycerol yield (g glycerol formed/g glucose consumed) lower during nitrogen limitation than under carbon limitation. The biomass yield on ATP (g dry weight biomass produced/mol ATP consumed) was consequently found to be lower during nitrogen-limited conditions.  相似文献   

8.
Summary The induction of yeast cell aggregates in a column reactor was initiated by packing yeast cell paste of Saccharomyces uvarum into the column, and then YMP broth was fed into the column from the bottom at a linear flow rate of 2.5 cm/h. Thereafter, yeast cells aggregated in the column within 48 h without a supply of oxygen. When this yeast aggregate column reactor was used for continuous ethanol production, a final ethanol concentration of 10.8% (w/v) was obtained from 23% (w/v) of glucose in a YMP broth with a dilution rate of 0.05 h-1, and 4.9% (w/v) was obtained from 10% (w/v) of glucose with a dilution rate of 0.6 h-1. The theoretical yield was above 97% in both cases. The ethanol production rates were 13 g1 h-1 l-1 and 90 g1 h-1 l-1 for producing 10.8% (w/v) and 4.9% (w/v) of ethanol respectively. This column reactor was maintained at a steady state for more than one month.  相似文献   

9.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

10.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

11.
The influence of pH, temperature and carbon source (glucose and maltose) on growth rate and ethanol yield of Dekkera bruxellensis was investigated using a full-factorial design. Growth rate and ethanol yield were lower on maltose than on glucose. In controlled oxygen-limited batch cultivations, the ethanol yield of the different combinations varied from 0.42 to 0.45 g (g glucose)−1 and growth rates varied from 0.037 to 0.050 h−1. The effect of temperature on growth rate and ethanol yield was negligible. It was not possible to model neither growth rate nor ethanol yield from the full-factorial design, as only marginal differences were observed in the conditions tested. When comparing three D. bruxellensis strains and two industrial isolates of Saccharomyces cerevisiae, S. cerevisiae grew five times faster, but the ethanol yields were 0–13% lower. The glycerol yields of S. cerevisiae strains were up to six-fold higher compared to D. bruxellensis, and the biomass yields reached only 72–84% of D. bruxellensis. Our results demonstrate that D. bruxellensis is robust to large changes in pH and temperature and may have a more energy-efficient metabolism under oxygen limitation than S. cerevisiae.  相似文献   

12.
The steady-state residual glucose concentrations in aerobic chemostat cultures of Saccharomyces cerevisiae ATCC 4126, grown in a complex medium, increased sharply in the respiro-fermentative region, suggesting a large increase in the apparent ks value. By contrast, strain CBS 8066 exhibited much lower steady-state residual glucose concentrations in this region. Glucose transport assays were conducted with these strains to determine the relationship between transport kinetics and sugar assimilation. With strain CBS 8066, a high-affinity glucose uptake system was evident up to a dilution rate of 0.41 h–1, with a low-affinity uptake system and high residual glucose levels only evident at the higher dilution rates. With strain ATCC 4126, the high-affinity uptake system was present up to a dilution rate of about 0.38 h–1, but a low-affinity uptake system was discerned already from a dilution rate of 0.27 h–1, which coincided with the sharp increase in the residual glucose concentration. Neither of the above yeast strains had an absolute vitamin requirement for aerobic growth. Nevertheless, in the same medium supplemented with vitamins, no low-affinity uptake system was evident in cells of strain ATCC 4126 even at high dilution rates and the steady-state residual glucose concentration was much lower. The shift in the relative proportions of the high and low-affinity uptake systems of strain ATCC 4126, which might have been mediated by an inositol deficiency through its effect on the cell membrane, may offer an explanation for the unusually high steady-state residual glucose concentrations observed at dilution rates above 52% of the wash-out dilution rate.  相似文献   

13.
The influence of glucose concentration in nutrient media on the specific growth rate and biomass yield in the course of continuous fermentation ofSaccharomyces cerevisiae was investigated. An increase of glucose content in media decreased the specific growth rate and the biomass yield. Glucose concentration had significant effects on protein and phosphate contents of cells. However, an increased glucose concentration increased the fermentative power ofS. cerevisiae (SJA-method). An increase of the dilution rate decreased the cell concentration in the fermentor. Specific growth rate approached the values of the dilution rate. The best agreement has been obtained at a dilution rate of 0.20/h. This dilution rate proved to be most convenient for the investigated microorganism and cultivation conditions (media composition, pH, aeration intensity and temperature). Biomass yield proved to be decreased by an increase of the dilution rate.  相似文献   

14.
Summary The specific ethanol productivity withSaccharomyces cerevisiae grown aerobically in a chemostat at a growth rate of 0.17 hr–1 was found to increase from zero to 13 mmol/g cell dry matter·h when the potassium content in the substrate used was decreased to 0.05 mol/kg glucose. 78% of the glucose metabolized were converted to ethanol under these aerobic growth conditions.  相似文献   

15.
Evidence is submitted that glucose is found in a chemically unaltered form in cells ofSaccharomyces cerevisiae RXII incubated with glucose, if the culture is grown under aerobic conditions at 30°C and is in the logarithmic phase of growth at the moment of harvesting. Under these conditions, the course of formation of a glucose steady state can be studied under aerobic and anaerobic incubation conditions. The steady state glucose concentration in the cells is the linear function of the glucose concentration in the medium.  相似文献   

16.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

17.
Summary A new approach for continuous production of ethanol was developed using a Hollow fiber fermentor (HFF). Saccharomyces cerevisiae cells were packed into the shell-side of a hollow fiber module. Using 100 g/l glucose in the feed gave an optimum ethanol productivity, based on total HFF volume, of 40 g ethanol/l/h at a dilution rate of 3.0 h-1. Under these conditions, glucose utilization was 30%. However, at 85% glucose utilization the productivity was 10 g ethanol/l/h. This compares to batch fermentor productivity of 2.1 g ethanol/l/h at 100% glucose utilization.  相似文献   

18.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under transient-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Yeast cell dry matter, substrate concentration, specific oxygen uptake, specific carbon dioxide release, and respiration quotient were measured during the different transient states. Depending on which range of the dilution rate the initial steady state was found, we obtain different responses to the shift experiment. For the lower range, up to D = 0.07, we deal with damped oscillations ranging above and below the steady-state values. For the higher specific growth rates, the rate of damping is strongly enhanced and the shape of the curves becomes an asymptotic approach to the final steady states.  相似文献   

19.
Human acylphosphatase (h-AP, EC 3.6.1.7) has been reported to catalyse the hydrolysis of the 1-phosphate group of 1,3-diphosphoglycerate. In vivo operation of this reaction in the yeast Saccharomyces cerevisiae would bypass phosphoglycerate kinase and thus reduce the ATP yield from glycolysis. To investigate whether h-AP can indeed replace the S. cerevisiae phosphoglycerate kinase, a multi-copy plasmid carrying the h-AP gene under control of the yeast TDH3 promoter was introduced into a pgk1 mutant of S. cerevisiae. A strain carrying the expression vector without the h-AP cassette was used as a reference. For both strains, steady-state carbon- and energy-limited chemostat cultures were obtained at a dilution rate of 0.10 h–1on a medium containing a mixture of glucose and ethanol (15% and 85% on a carbon basis, respectively). Although the h-AP strain exhibited a high acylphosphatase activity in cell extracts, switching to glucose as sole carbon and energy source resulted in a complete arrest of glucose consumption and growth. The lack of a functional glycolytic pathway was further evident from the absence of ethanol formation in the presence of excess glucose in the culture. As h-AP cannot replace yeast phosphoglycerate kinase in vivo, the enzyme is not a useful tool to modify the ATP yield of glycolysis in S. cerevisiae.  相似文献   

20.
A highly instrumented computer-coupled bioreactor is used to investigate metabolic changes of Saccharomyces cerevisiae in aerobic fed-batch systems which are generally applied in bankers' yeast manufacture. The four types of metabolism (oxidation of glucose, aerobic fermentation, oxidation of glucose and ethanol, and oxidation of ethanol) appearing in such systems are characterized by four significant fermentation parameters: Respiratory quotient (RQ), glucose uptake rate (Qg), ethanol turnover rate (QEtOH), and growth yield on glucose (Yg). Below the critical glucose concentration glucose and ethanol are utilized simultaneously. The shift from aerobic fermentation to nondiauxic growth on glucose and ethanol is not only dependent on glucose concentration. but also on the precultivation on cells. The uptake of ethanol is controlled by the glucose supply except in the case when ethanol is limiting; the oxygen uptake rate (Qo2), however, is unaffected by the ratio of Qg and QEtOH. Critical glucose concentration is not a constant value for a particular strain, but varies corresponding to the nutritional state of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号