首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Batrachotoxin, veratridine and aconitine, activators of the voltage-dependent sodium channel in excitable cell membranes, increase the rate of 22Na+ uptake by mouse brain synaptosomes. Batrachotoxin was both the most potent (K0.5, 0.49 microM) and most effective activator of specific 22Na+ uptake. Veratridine (K0.5, 34.5 microM) and aconitine (K0.5, 19.6 microM) produced maximal stimulations of 22Na+ uptake that were 73% and 46%, respectively, of that produced by batrachotoxin. Activation of 22Na+ uptake by veratridine was completely inhibited by tetrodotoxin (I50, 6 nM ), a specific blocker of nerve membrane sodium channels. These results identify appropriate conditions for measuring sodium channel-dependent 22Na+ flux in mouse brain synaptosomes. The pharmacological properties of mouse brain synaptosomal sodium channels described here are distinct from those previously described for sodium channels in rat brain synaptosomes and mouse neuroblastoma cells.  相似文献   

2.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   

3.
The large size (six membrane-spanning repeats in each of four domains) and asymmetric architecture of the voltage-dependent Na+ channel has hindered determination of its structure. With the goal of determining the minimum structure of the Na+ channel permeation pathway, we created two stable cell lines expressing the voltage-dependent rat skeletal muscle Na+ channel (micro1) with a polyhistidine tag on the C terminus (muHis) and pore-only micro1 (muPore) channels with S1-S4 in all domains removed. Both constructs were recognized by a Na+ channel-specific antibody on a Western blot. muHis channels exhibited the same functional properties as wild-type micro1. In contrast, muPore channels did not conduct Na+ currents nor did they bind [3H]saxitoxin. Veratridine caused 40 and 54% cell death in muHis- and muPore-expressing cells, respectively. However, veratridine-induced cell death could only be blocked by tetrodotoxin in cells expressing muHis, but not muPore. Furthermore, using a fluorescent Na+ indicator, we measured changes in intracellular Na+ induced by veratridine and a brevotoxin analogue, pumiliotoxin. When calibrated to the maximum signal after addition of gramicidin, the maximal percent increases in fluorescence (deltaF) were 35 and 31% in cells expressing muHis and muPore, respectively. Moreover, in the presence of 1 microm tetrodotoxin, deltaF decreased significantly to 10% in muHis- but not in muPore-expressing cells (43%). In conclusion, S5-P-S6 segments of micro1 channels form a toxin-activable ionophore but do not reconstitute the Na+ channel permeation pathway with full fidelity.  相似文献   

4.
Potassium uptake by guard cells represents part of the osmotic motor which drives stomatal opening. Patch-clamp measurements have identified inward rectifying K+ channels capable of mediating K+ uptake in guard cells and various other plant cell types. Here we report the molecular cloning and characterization of a voltage-dependent K+ channel (KST1) from potato (Solanum tuberosum L.) guard cells. In situ hybridization shows expression of kst1 in guard cells. Two-electrode voltage-clamp and patch-clamp studies of the gene product after cRNA injection into Xenopus oocytes identified KST1 as a slowly activating, voltage-dependent, inward rectifying K+ channel. The single channel current voltage curve was linear in the range -160 to +20 mV, with a deduced single channel conductance of 7 pS in symmetrical 100 mM K+. This channel type, modulated by pH changes within the physiological range, required ATP for activation. In line with the properties of a K(+)-selective channel, KST1 was permeable to K+, Rb+ and NH4+ and excluded Na+ and Li+. Cs+ at submillimolar concentrations blocked the channel in a voltage-dependent manner. Related studies on potato guard cell protoplasts confirmed the biophysical characteristics of the kst1 gene product (KST1) in the heterologous expression system. Therefore, KST1 represents a major K+ uptake channel in potato guard cells.  相似文献   

5.
[3H]Acetylcholine efflux and Na+-K+ ATPase ion pump activity were measured concomitantly in rat cortical synaptosomes. Ouabain (500 microM), strophanthidin (500 microM), and parachloromercuribenzene sulfonate (500 microM) each inhibited ouabain-sensitive 86Rb uptake and elevated [3H]acetylcholine release independently of the external calcium concentration. Veratridine (10 microM), electrical field stimulation (60 V, 60 Hz, 5-ms pulse duration), or the calcium ionophore A23187 (10 micrograms/ml) also inhibited ouabain-sensitive 86Rb uptake and released [3H]acetylcholine, but via a calcium-dependent process. Veratridine-induced [3H]acetylcholine release and ion pump inhibition were correlated over a wide range of drug concentrations and both effects were blocked by pre-treatment with tetrodotoxin (1 microM). The rate of [3H]acetylcholine efflux from superfused synaptosomes was increased within 15 s of exposure to ouabain, strophanthidin, veratridine, A23187, or field stimulation, while ouabain-sensitive 86Rb uptake was significantly decreased within a similar interval. These results suggest that [3H]acetylcholine release is due at least in part to inhibition of Na+-K+ ATPase.  相似文献   

6.
Depolarization of differentiated neuroblastoma X glioma (NG108-15) cells with KCl (50 mM) or veratridine (50 microM) stimulated Ca2+ accumulation, was detected by quin 2 fluorescence. Intracellular Ca2+ concentrations ([Ca2+]i) were elevated about threefold from 159 +/- 7 to 595 +/- 52 nM (n = 12). Ca2+ entry evoked by high extracellular K+ concentration ([K+]o) was voltage-dependent and enhanced by the dihydropyridine agonists, BAY K 8644 and CGP 28 392, in a dose-dependent manner. CGP 28 392 was less potent and less efficacious than BAY K 8644. The (+) and (-) stereoisomers of 202-791 showed agonist and antagonist properties, respectively. (+)-202-791 was less potent, but as efficacious as BAY K 8644. In the absence of KCl, BAY K 8644 had no effect on Ca2+ entry. Voltage-sensitive calcium channel (VSCC) activity was blocked by organic Ca2+ channel antagonists (nanomolar range) both before and after KCl treatment and also by divalent metal cations (micromolar range). High [K+]o-induced Ca2+ accumulation was dependent on external Ca2+, but not on external Na+ ions ([Na]o), and was insensitive to both tetrodotoxin (3 microM) and tetraethylammonium (10 microM). In contrast, veratridine-induced Ca2+ accumulation required [Na+]o, and was blocked by tetrodotoxin, but not by nimodipine (1 microM). Veratridine-induced Ca2+ accumulation was slower (approximately 45 s), smaller in magnitude (approximately 30% of [K+]o-induced Ca2+ entry), and also enhanced by BAY K 8644 (approximately 50%). VSCC were identified in neuronal hybrid (NG108-15 and NCB-20) cells, but not in glial (C6BU-1), renal epithelial (MDCK), and human astrocytoma (1321N1) cells. NG108-15 cells differentiated with 1.0 mM dibutyryl cyclic AMP showed greater VSCC activity than undifferentiated cultures. These results suggest that cultured neural cells provide a useful system to study Ca2+ regulation via ion channels.  相似文献   

7.
Voltage-gated excitability of purified human NK cells was studied by using flow cytometry and the voltage-sensitive dye, oxonol. Highly purified human NK cells (CD16 = 95 +/- 1%) from normal volunteers were prepared by using a negative panning technique. The Na(+)-channel agonists batrachotoxin (BTX) (1 to 4 microM) and veratridine (Ver) (100 to 400 microM) depolarized a population of highly purified human NK cells as determined by flow cytometry. BTX and Ver responses were concentration-, time-, temperature-, and Na(+)-dependent. The Na+ channel antagonist tetrodotoxin (1 microM) blocked BTX and Ver responses. Ver (100 microM) produced significant inhibition of cytotoxicity when purified NK cells were incubated with K562 tumor target cells in a 4-h 51Cr release cytotoxicity assay. The effect was blocked by tetrodotoxin. These results strongly suggest presence of functional Na+ channels in NK cells. Activation of voltage-dependent Na+ channels depolarizes cells and reduces their in vitro cytotoxic function.  相似文献   

8.
The cell line C9 used in this paper has a resting potential of --50 mV (+/- 10 mV) but is unable to generate an action potential upon electrical stimulation. The cell membrane has receptors for the selectivity filter toxin tetrodotoxin as well as for the gating system toxins, veratridine, scorpion toxin and sea anemone toxin. The Na+ channel which remains silent to electrical stimulation in the absence of toxins can be chemically activated by the gating system toxins. This has been demonstarted by electrophysiological techniques and by 22Na+ flux studies. The electrophysiological approach has shown that the sea anemone toxin is able to induce a spontaneous slow-wave activity inhibited by tetrodotoxin. 22Na+ influx analyses have shown that veratridine and the sea anemone toxin produce an important increase of the initial rate of 22Na+ influx into the C9 cell. The stimulation of 22Na+ entry by these gating system toxins is similar to that found using spiking neuroblastoma cells. Veratridine and the sea anemone toxin on one hand as well as veratridine and the scorpion toxin on the other hand are synergistic in their action to stabilize an open and highly permeable form of the sodium channel. Stimulation of 22Na+ entry into the cell through the sodium channel maintained open by the gating system neurotoxins is completely suppressed by tetrodotoxin.  相似文献   

9.
Vanadate is a commonly used Ca2+ pump blocker, exerting a substantial effect on Ca2+ extrusion at millimolar concentrations in human red cells. At such levels, vanadate also seems to open an L type-like Ca2+ channel in these cells (J Biol Chem 257 (1982) 7414; Gen Physiol Biophys 16 (1997) 359). Since neither a dose-dependence effect nor a metabolic requirement for the latter action could be found in the literature, we have addressed this matter in the present work. Accordingly, vanadate action on Ca2+ entry was systematically investigated in both young and old human red cells after metabolic depletion. Although vanadate enhanced Ca2+ entry indifferently in either cell type, a distinct over-all effect was paradoxically found depending on whether or not metabolic substrates that give rise to ATP were present. In ATP-depleted cells, unlike with ATP-containing cells, vanadate-stimulated Ca2+ entry was neither blocked by raising external K+ nor by adding voltage-dependent Ca2+ channel blockers (nifedipine, calciseptine, FTX3.3) or compounds affecting polyphosphoinositide metabolism (Li+, neomycin). Likewise, full substitution of external Na+ by other cations did not inhibit vanadate-enhanced Ca2+ entry. Regardless of the cell age, stimulation by vanadate depended strongly on internal Na+ (0-30 mM). Vanadate stimulation was significantly reduced (about 55%) by heparin (10 mg/ml) only in young cells and by ryanodine (about 35%, 250 microM) in old cells. The results suggest presence of a new vanadate-induced Ca2+ entry pathway in ATP-depleted cells.  相似文献   

10.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations, batrachotoxin (BTX) induced long-lived single-channel currents (25 pS at 500 mM NaCl) that showed voltage-dependent activation and were blocked by TTX. This block was also voltage dependent, with negative potentials increasing block. The permeability ratios were 4.7 for Na+:K+ and 1.6 for Na+:Li+. The midpoint for steady state activation occurred around -70 mV and did not shift significantly when the NaCl concentration was increased from 50 to 1,000 mM. Veratridine-induced single-channel currents were about half the size of those activated by BTX. Unpurified, nonsolubilized sodium channels from E. electricus membrane fragments were also incorporated into planar bilayers. There were no detectable differences in the characteristics of unpurified and purified sodium channels, although membrane stability was considerably higher when purified material was used. Thus, in the eel, the large, 260-kD polypeptide alone is sufficient to demonstrate single-channel activity like that observed for mammalian sodium channel preparations in which smaller subunits have been found.  相似文献   

12.
The electrical properties of the clonal muscle cell line L6 can be revealed by the measurement of ion fluxes. Under many circumstances, this technique provides a useful alternative to electro-physiology. In myoblasts, sodium uptake through voltage-dependent ionophores can be stimulated by veratridine and inhibited by tetrodotoxin. In myotubes which result from fusion of myoblasts, these voltage-dependent sodium channels appear to increase in number, paralleling the development of the action potential. Furthermore, in myotubes (but not myoblasts) carbamylcholine is able to stimulate a sodium influx through ionophores which are inhibitable by curare (dTC) but not tetrodotoxin (TTX). This demonstrates the presence of acetylcholine receptors on the fused cells. The cells also have a manganese-inhibitable calcium channel which appears to be voltage dependent and may be responsible for the calcium-dependent component of the action potential. Depolarizing concentrations of potassium in the medium stimulate calcium uptake both in the presence and absence of sodium. Veratridine and carbamylcholine also stimulate calcium influx, but both require the presence of sodium. This indicates that the depolarization necessary for opening the calcium channel is dependent upon sodium influx in these latter cases. Myoblasts and myotubes appear to have these channels in about equal numbers.  相似文献   

13.
Scorpion toxins, the basic miniproteins of scorpion venom, stimulated the passive uptake of Na+ and Ca2+ in chick embryo heart cells. Half-maximum stimulation was obtained for 20-30 nM Na+ and 40-50 nM Ca2+. Scorpion toxin-activated Na+ and Ca2+ uptakes were fully inhibited by tetrodotoxin, a specific inhibitor of the action potential Na+ ionophore in excitable membranes. Half-maximum inhibition was obtained with the same concentration of tetrodotoxin (10 nM) for both Na+ and Ca2+. Scorpion toxin-stimulated Ca2+ uptake was dependent on extracellular Na+ concentration and was not inhibited by Ca2+ channel blocking drugs which are inactive on heart cell action potential. Thus, in heart cells scorpion toxin affects the passive Ca2+ transport, which is coupled to passive Na+ ionphore. Other results suggest that (1) tetrodotoxin and scorpion toxin bind to different sites of the sarcolemma and (2) binding of scorpion toxin to its specific sites may unmask latent tetrodotoxin - sensitive fast channels.  相似文献   

14.
The electrical properties of the clonal muscle cell line L6 can be revealed by the measurement of ion fluxes. Under many circumstances, this technique provides a useful alternative to electro-physiology. In myoblasts, sodium uptake through voltage-dependent ionophores can be stimulated by veratridine and inhibited by tetrodotoxin. In myotubes which result from fusion of myoblasts, these voltage-dependent sodium channels appear to increase in number, paralleling the development of the action potential. Furthermore, in myotubes (but not myoblasts) carbamylcholine is able to stimulate a sodium influx through ionophores which are inhibitable by curare (dTC) but not tetrodotoxin (TTX). This demonstrates the presence of acetylcholine receptors on the fused cells. The cells also have a manganese-inhibitable calcium channel which appears to be voltage dependent and may be responsible for the calcium-dependent component of the action potential. Depolarizing concentrations of potassium in the medium stimulate calcium uptake both in the presence and absence of sodium. Veratridine and carbamylcholine also stimulate calcium influx, but both require the presence of sodium. This indicates that the depolarization necessary for opening the calcium channel is dependent upon sodium influx in these latter cases. Myoblasts and myotubes appear to have these channels in about equal numbers.  相似文献   

15.
The most active component in smooth muscle contraction, isolated from the whole venom of the marine snail Conus tessulatus, has a molecular mass of about 55 kDa. The toxin protein, tessulatus toxin, appeared to be constituted by two distinct polypeptide bands of 26 kDa and 29 kDa. The pure toxin caused a marked contraction of both guinea-pig ileum and rabbit aorta at nanomolar concentrations. Tessulatus-toxin-induced contraction was indirectly prevented by classical inhibitors of the voltage-dependent Ca2+ channel. Tessulatus toxin caused a large increase in the initial rate of 45Ca2+ uptake by cardiac cells. This uptake was insensitive to Ca2+ channel blockers at concentrations 100-1000 fold higher than those known to block voltage-dependent Ca2+ channels in these cells. Voltage clamp experiments have confirmed that tessulatus toxin was not directly active on the Ca2+ current. Tessulatus-toxin-stimulated 45Ca2+ influx was inhibited by dichlorobenzamil and suppressed when Na+ was substituted by Li+, indicating that the toxin acted via activation of the Na+/Ca2+ exchange system in cardiac cells. Activation by tessulatus toxin of the Na+/Ca2+ exchange system occurred via a toxin-stimulated Na+ entry into cardiac cells and was observed in the same range of toxin concentration which produced 45Ca2+ entry. The Na+ entry system that was activated by tessulatus toxin was insensitive to classic inhibitors of known Na+ entry systems in cardiac cells. Possible mechanisms by which tessulatus toxin induced Na+ entry into cardiac cells and contractions in smooth muscles are discussed. Tessulatus toxin is cytotoxic when used at high concentrations.  相似文献   

16.
1. Sodium uptake associated with the activation of voltage-sensitive sodium channels by alkaloid activators, batrachotoxin, veratridine, and aconitine in presynaptic nerve terminals isolated from the central nervous system of cockroach (Periplaneta americana) was investigated. 2. Batrachotoxin (K0.5, 0.2 microM) was full agonist as for most effective activator of Na+ uptake; veratridine (K0.5, 2.5 microM) and aconitine (K0.5, 7.6 microM) produced a maximal stimulation of 22Na+ uptake that were 71% and 43% respectively of that produced by batrachotoxin. 3. Veratridine-dependent 22Na+ uptake was completely inhibited by tetrodotoxin (I0.5, 11 nM), a specific inhibitor of the nerve membrane sodium channels. 4. The present study describes appropriate conditions for measuring neurotoxins--stimulated sodium transport in insect central nervous system synaptosomes. The data show that voltage-sensitive sodium channels as defined by specific activation by the alkaloid neurotoxins are qualitatively distinct in insect synaptosomes than those previously described for vertebrate brain synaptosomes, cultured neuronal cell, nerve membrane vesicles and neuroblastoma cells.  相似文献   

17.
Uptake of radioactive calcium, 45Ca efflux, and hormone release from the isolated rat neurohypophysis were monitored in vitro after the addition of veratridine to the incubation medium. Veratridine dramatically increased hormone release, but the release was not sustained and had declined by about 90% after 2 h. Removal of external Na+ prevented hormone release as did addition to the incubation medium of tetrodotoxin or the calcium antagonists D600 and Mn2+ ions. Veratridine increased 45Ca uptake into the isolated neurohypophysis and the increase could be prevented by addition of tetrodotoxin or D600 to the medium. Efflux of 45Ca was not changed by addition of veratridine. The results underline the importance of both Na+ and Ca+2 channels in the regulation of secretion of neurosecretory products.  相似文献   

18.
The purification of axonal membranes of crustaceans was followed by measuring enrichment in [3H]tetrodotoxin binding capacity and in Na+, K+-ATPase activity. A characteristic of these membranes is their high content of lipids and their low content of protein as compared to other types of plasmatic membranes. The axonal membrane contains myosin-like, actin-like, tropomyosin-like, and tubulin-like proteins. It also contains Na+, K+-ATPase and acetylcholinesterase. The molecular weights of these two enzymes after solubilization are 280,000 and 270,000, respectively. The molecular weights of the catalytic subunits are 96,000 for ATPase and 71,000 for acetylcholinesterase. We confirmed the presence of a nicotine binding component in the axonal membrane of the lobster but we have been unable to find [3H]nicotine binding to crab axonal membranes. The binding to axonal membranes og of the sodium channel, has been studied in detail. The dissociation constant for the binding of [3H]tetrodotoxin to the axonal membrane receptor is 2.9 nM at pH 7.4. The concentration of the tetrodotoxin receptor in crustacean membranes is about 10 pmol/mg of membrane protein, 7 times less than the acetylcholinesterase, 30 times less than the Na+, K+-ATPase, and 30 times less than the nicotine binding component in the lobster membrane. A reasonable estimate indicates that approximately only one peptide chain in 1000 constitutes the tetrodotoxin binding part of the sodium channel in the axonal membrane. Veratridine, which acts selectively on the resting sodium permeability, binds to the phospholipid part of the axonal membrane. [3H]Veratridine binding to membranes parallels the electrophysiological effect. Veratridine and tetrodotoxin have different receptor sites. Although tetrodotoxin can repolarize the excitable membrane of a giant axon depolarized by veratridine, veratridine does not affect the binding of [3H]tetrodotoxin to purified axonal membranes. Similarly, tetrodotoxin does not affect the binding of [3H]veratridine to axonal membranes. Scorpion neurotoxin I, a presynaptic toxin which affects both the Na+ and the K+ channels, does not interfere with the binding of [3H]tetrodotoxin or [3H]veratridine to axonal membranes. Tetrodotoxin, veratridine, and scorpion neurotoxin I, which have in common the perturbation of the normal functioning of the sodium channel, act upon three different types of receptor sites.  相似文献   

19.
We have studied a fast inward current expressed in oocytes from one Xenopus laevis. This current was characterized as a sodium current. It was activated by depolarizations to -50 mV or higher, peaked within 3-5 ms, and then decayed following a mono-exponential timecourse. When clamped at different holding potentials, the current displayed voltage-dependent inactivation with a V0.5 of -51 mV. The channel responsible for this Na+ entry was blocked by tetrodotoxin with a K0.5 of 8 nM, and was resistant to block by lidocaine at concentrations up to 100 microM. The pharmacological similarities between neuronal and oocyte sodium channels suggest that the two channels share a conserved structure.  相似文献   

20.
Substance P stimulated the uptake of guanidinium in neuroblastoma X glioma hybrid cells and neuroblastoma cells but not in polyploid glioma cells. Guanidinium has previously been shown to pass the action potential Na+ channel in the two neuronal cell lines. Half-maximal stimulation was reached at 3 microM substance P and, with the hybrid cells, a saturation was seen above 10 microM. The analogue (D-Pro2,D-Trp7,9)-substance P, recently described as a substance P antagonist, caused a stimulation of guanidinium uptake comparable to that seen in the presence of substance P and did not inhibit the stimulation exerted by substance P. The pharmacological properties of the substance P-activated ion channel were investigated. Tubocurarine, phentolamine and propranolol blocked the substance P-stimulated guanidinium uptake with half-maximal inhibitory concentrations of 0.5, 5 and 50 microM. A similar characteristics has been found previously with the veratridine-activated Na+ channel in the cell lines investigated here. Peptides structurally related to substance P such as physalaemin and eledoisin, or others such as neurotensin, bradykinin, D-Ala2, Met5-enkephalinamide and ACTH(1-24) did not affect guanidinium uptake. In view of the high concentrations of substance P required for eliciting an effect in the cell lines, the involvement of specific receptors is questioned. A direct interaction of the peptide with the action potential Na+ channel is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号