首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different concentrations of salts on natural and recombinant strains ofBacillus subtilis andEscherichia coli was studied. The recombinant strain ofB. subtilis was found to be more osmotolerant than the wild-type strain of this bacterium, whereas the opposite situation was observed for the recombinant and wild-type strains ofE. coli. Some salts exerted a bacteriostatic effect onE. coli andB. subtilis. The adaptive capacity of recombinant strains depended on the number of plasmid copies in the cells. The introduction of recombinant bacteria into model ecosystems resulted in the generation of their variants with increased osmotolerance.  相似文献   

2.
From a cosmid gene bank of Bacillus cereus GP4 in Escherichia coli we isolated clones which, after several days of incubation, formed hemolysis zones on erythrocyte agar plates. These clones contained recombinant cosmids with B. cereus DNA insertions of varying lengths which shared some common restriction fragments. The smallest insertion was recloned as a PstI fragment into pJKK3-1, a shuttle vector which replicates in Bacillus subtilis and E. coli. When this recombinant plasmid (pJKK3-1 hly-1) was transformed into E. coli, it caused hemolysis on erythrocyte agar plates, but in liquid assays no external or internal hemolytic activity could be detected with the E. coli transformants. B. subtilis carrying the same plasmid exhibited hemolytic activity at levels comparable to those of the B. cereus donor strain. The hemolysin produced in B. subtilis seemed to be indistinguishable from cereolysin in its sensitivity to cholesterol, activation by dithiothreitol, and inactivation by antibodies raised against cereolysin. When the recombinant DNA carrying the cereolysin gene was used as a probe in hybridization experiments with chromosomal DNA from a streptolysin O-producing strain of Streptococcus pyogenes or from listeriolysin-producing strains of Listeria monocytogenes, no positive hybridization signals were obtained. These data suggest that the genes for these three SH-activated cytolysins do not have extended sequence homology.  相似文献   

3.
By using plasmid pMB9, penicillinase genes (penP and penI) from both the wild-type and constitutive strains of Bacillus licheniformis 9945A were cloned in EScherichia coli. When a low-copy-number plasmid was used, both wild-type and constitutive penicillinase genes could be transferred into Bacillus subtilis. However, when a high-copy-number plasmid was used, only the genes of the wild type could be transferred. These recombinant plasmids in B. subtilis could all be transferred by the protoplast transformation procedure into B. licheniformis. Transformants of E. coli were resistant to ampicillin (20 micrograms/ml) in spite of the low penicillinase activities (7 U/mg of cells). However, transformants of B. subtilis and B. licheniformis were sensitive to ampicillin (20 micrograms/ml) even in high penicillinase activities (more than 10,000 U/mg of cells). The secretion of penicillinase was rarely observed in E. coli. In contrast, penicillinases secreted from transformants of B. subtilis and B. licheniformis were around 30 and 60% of the total activities, respectively. We took advantage of the plasmids to permit the construction of hetero- and mero-polyploid structures in host cells, and we discuss a regulatory mechanism of penicillinase synthesis in B. licheniformis.  相似文献   

4.
Two recombinant plasmids, pSNL1 and pSNL2, carrying structural genes for L-arabinose utilization were isolated from a Bacillus subtilis gene library. Both plasmids complemented araD mutations in a Rec- B. subtilis strain and in Escherichia coli. Moreover, pSNL1 also complemented araB mutations in both species and efficiently transformed araA Rec+ B. subtilis strains to Ara+. Detailed physical mapping of both plasmids in addition to transformation experiments involving defined restriction fragments from the pSNL1 insert unambiguously determined the gene order to be araD, araB, and araA, an order different from that found in E. coli.  相似文献   

5.
Enterotoxigenic Escherichia coli (ETEC) is known as a worldwide cause of diarrheal disease. The pathogenesis involves the attachment of the microorganisms to the mucosa and the production of enterotoxins. Surface expression of CS31A fimbriae was assessed by Western blots, dot blots, immunofluorescence, and electron microscopy using negative staining and immunogold labeling. These investigations revealed significant differences in both the morphology of the wild-type and recombinant strains and the antigen exposure of CS31A in the wild-type and recombinant strains. In the wild-type ETEC strain, expression of CS31A was subject to phase variation. The recombinant E. coli strain produced CS31A but was prone to epitope shedding. In Vibrio cholerae vaccine strain CVD 103-HgR, the recombinant CS31A antigen was expressed but was only found intracellularly. Thus, E. coli strains seem to lend themselves better to the development of recombinant vaccines expressing ETEC-specific antigens at the cell's surface than strains from other orders or genera such as V. cholerae.  相似文献   

6.
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.  相似文献   

7.
Promoters of the genes of guanyl-specific ribonucleases of Bacillus intermedius (binase) and Bacillus pumilus (RNase Bp) were found to contain sequences homologous to those recognizable by the regulatory protein PhoP in the promoters of the PHO regulon of B. subtilis, as well as regions partially homologous to the binding sites of another regulatory protein, PhoB, in the promoters of the PHO regulon of Escherichia coli. The role of the two-component regulatory systems PhoP-PhoR and PhoB-PhoR in the regulation of expression of the genes of binase and RNase Bp in recombinant strains of B. subtilis and E. coli was studied by using mutant strains. It was established that the expression of these genes in recombinant B. subtilis cells is stringently controlled by the PhoP-PhoR two-component regulatory system, whereas the expression of these genes in E. coli cells is not controlled by the regulatory proteins PhoB or PhoR. Presumably, regulatory systems of the response to phosphate starvation, analogous to the PHO regulon of B. subtilis, also function in other representatives of the genus Bacillus.  相似文献   

8.
Infections with enterotoxigenic Escherichia coli (ETEC) are a major cause of travelers' diarrhea worldwide. Colonization of the small intestine mucosa is dependent on specific colonization factor antigens (CFA) and coli surface (CS) antigens. CFA/1, CS3, and CS6 are the most prevalent fimbrial antigens found in clinical isolates. The goal of our study was to visualize the morphology of CS3 and CS6 fimbriae in wild-type and recombinant E. coli strains by means of transmission electron microscopy in conjunction with negative staining and immunolabeling. Corresponding ETEC genes were cloned into E. coli K12 strain DH10B. Expression of fimbriae was dependent on culture conditions and sample handling. Specific immunolabeling of fimbriae unequivocally demonstrated the presence of all types of surface antigens investigated. Negative staining was effective in revealing CS3 but not CS6. In addition, this technique clearly demonstrated differences in the morphology of genetically and immunologically identical CS3 surface antigens in wild-type and recombinant strains. This paper provides a basis for the assessment of recombinant vaccines.  相似文献   

9.
Continuous cultivation in a glucose-limited chemostat was used to determine the growth parameters of wild-type Bacillus subtilis and of a recombinant, riboflavin-producing strain. Maintenance coefficients of 0.45 and 0.66 mmol of glucose g-1 h-1 were determined for the wild-type and recombinant strains, respectively. However, the maximum molar growth yield of 82 to 85 g (cell dry weight)/mol of glucose was found to be almost identical in both strains. A nonlinear relationship between the specific riboflavin production rate and the dilution rate was observed, revealing a coupling of product formation and growth under strict substrate-limited conditions. Most prominently, riboflavin formation completely ceased at specific growth rates below 0.15 h-1. For molecular characterization of B. subtilis, the total amino acid composition of the wild type was experimentally determined and the complete building block requirements for biomass formation were derived. In particular, the murein sacculus was found to constitute approximately 9% of B. subtilis biomass, three- to fivefold more than in Escherichia coli. Estimation of intracellular metabolic fluxes by a refined mass balance approach revealed a substantial, growth rate-dependent flux through the oxidative branch of the pentose phosphate pathway. Furthermore, this flux is indicated to be increased in the strain engineered for riboflavin formation. Glucose catabolism at low growth rates with reduced biomass yields was supported mainly by the tricarboxylic acid cycle.  相似文献   

10.
We cloned and sequenced an operon of nine genes coding for the subunits of the Bacillus subtilis F0F1 ATP synthase. The arrangement of these genes in the operon is identical to that of the atp operon from Escherichia coli and from three other Bacillus species. The deduced amino acid sequences of the nine subunits are very similar to their counterparts from other organisms. We constructed two B. subtilis strains from which different parts of the atp operon were deleted. These B. subtilis atp mutants were unable to grow with succinate as the sole carbon and energy source. ATP was synthesized in these strains only by substrate-level phosphorylation. The two mutants had a decreased growth yield (43 and 56% of the wild-type level) and a decreased growth rate (61 and 66% of the wild-type level), correlating with a twofold decrease of the intracellular ATP/ADP ratio. In the absence of oxidative phosphorylation, B. subtilis increased ATP synthesis through substrate-level phosphorylation, as shown by the twofold increase of by-product formation (mainly acetate). The increased turnover of glycolysis in the mutant strain presumably led to increased synthesis of NADH, which would account for the observed stimulation of the respiration rate associated with an increase in the expression of genes coding for respiratory enzymes. It therefore appears that B. subtilis and E. coli respond in similar ways to the absence of oxidative phosphorylation.  相似文献   

11.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

12.
Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis   总被引:14,自引:0,他引:14  
W M de Vos  S C de Vries  G Venema 《Gene》1983,25(2-3):301-308
By means of homopolymer dG-dC tailing, using PstI linearized pBR327 as vector, we constructed small plasmids containing the entire Escherichia coli recA gene. The 1.8-kb inserts were recloned in the Bacillus subtilis expression vector pPL608 in a B. subtilis recE4 strain. Analysis of plasmid-coded proteins showed expression of the E. coli recA gene both in minicells and whole cells of B. subtilis. Expression was under control of the bacteriophage SP02 promoter, which is part of pPL608. A recA-expressing plasmid completely abolished the transformation deficiency of the recE4 mutant as well as its sensitivity to mitomycin C (MC). The expressed recA gene also restored recombination in other B. subtilis strains lacking the recE gene product. These results indicate a high similarity between the functions of the E. coli RecA and B. subtilis RecE proteins.  相似文献   

13.
Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains.  相似文献   

14.
Covalently closed extrachromosomal deoxyribonucleic acid (DNA) was isolated from alpha-hemolytic wild-type strains of Escherichia coli. Most strains examined were able to transfer the hemolytic property with varying frequencies to nonhemolytic recipient strains. Out of eight naturally isolated alphahemolytic E. coli strains, four contained a set of three different supercoiled DNAs with sedimentation coefficients of 76S (plasmid A), 63S (plasmid B), and 55S (plasmid C). The sedimentation coefficients and the contour lengths of the isolated molecules correspond to molecular weights of 65 x 10(6), 41 x 10(6), and 32 x 10(6). Three alpha-hemolytic wild-type strains carried only one plasmid with a molecular weight of 41 x 10(6), and one strain harbored two plasmids with molecular weights of 41 x 10(6) and 32 x 10(6). Alpha-hemolytic transconjugants were obtained by conjugation of E. coli K-12 with the hemolytic wild-type strains. A detailed examination revealed that plasmids with the same sizes as plasmids B and C of the wild-type strains can be transferred separately or together to the recipients. Both plasmids possess the hemolytic determinant and transfer properties. Plasmid A appears to be, at least in one wild-type strain, an additional transfer factor without a hemolytic determinant. In one case a hemolytic factor was isolated, after conjugation, that is larger in size than plasmid A and appears to be a recombinant of both plasmids B and C.  相似文献   

15.
Two recombinant plasmid Escherichia coli strains containing amplified fumarate reductase activity converted fumarate to succinate at significantly higher rates and yields than a wild-type E. coli strain. Glucose was required for the conversion of fumarate to succinate, and in the absence of glucose or in cultures with a low cell density, malate accumulated. Two-dimensional gel electrophoretic analysis of proteins from the recombinant DNA and wild-type strains showed that increased quantities of both large and small fumarate reductase subunits were expressed in the recombinant DNA strains.  相似文献   

16.
Quantitative cloning efficiencies for B. megaterium, B. subtilis , and E. coli were compared. Transformation of B. megaterium is less efficient than transformation of B. subtilis or E. coli . The frequency of recombinant clones was equal in E. coli and B. megaterium ; both somewhat higher than in B. subtilis . Equivalent average insert sizes were found in B. megaterium and E. coli clones, but significantly smaller inserts were obtained in B. subtilis clones. Clones obtained and propagated in B. megaterium were structurally stable when grown under plasmid selection.  相似文献   

17.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

18.
The Bacillus sphaericus gene coding for penicillin V amidase, which catalyzes the hydrolysis of penicillin V to yield 6-aminopenicillanic acid and phenoxyacetic acid, has been isolated by molecular cloning in Escherichia coli. The gene is contained within a 2.2-kilobase HindIII-PstI fragment and is expressed when transferred into E. coli and Bacillus subtilis. The expression in B. subtilis carrying the recombinant plasmid is approximately two times higher than in the original B. sphaericus strain. A comparison of the purified enzyme from B. sphaericus and the expressed gene product in E. coli minicells suggests that the native enzyme consists of four identical subunits, each with a molecular weight of 35,000.  相似文献   

19.
20.
The Bacillus sphaericus gene coding for penicillin V amidase, which catalyzes the hydrolysis of penicillin V to yield 6-aminopenicillanic acid and phenoxyacetic acid, has been isolated by molecular cloning in Escherichia coli. The gene is contained within a 2.2-kilobase HindIII-PstI fragment and is expressed when transferred into E. coli and Bacillus subtilis. The expression in B. subtilis carrying the recombinant plasmid is approximately two times higher than in the original B. sphaericus strain. A comparison of the purified enzyme from B. sphaericus and the expressed gene product in E. coli minicells suggests that the native enzyme consists of four identical subunits, each with a molecular weight of 35,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号