首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 2E1 (CYP2E1) is highly inducible in a subset of astrocytes in vivo following ischemic or mechanical injury and in vitro by lipopolysaccharide or interleukin-1beta. In the present study, phorbol-12,13-dibutyrate (PDBu) was found to induce catalytically active CYP2E1 more than fourfold in cortical glial cultures. Little induction was seen up to 12 h, and full effects only at 21-24 h of PDBu treatment. CYP2E1 expression in PDBu-treated cells was enriched in a subset of astrocytes. The protein kinase C inhibitors, staurosporine and calphostin C, and the tyrosine kinase inhibitor genistein, but not its inactive analogue daidzein, prevented the induction of CYP2E1 by PDBu. It is suggested that CYP2E1, together with interleukin-6 and ciliary neurotrophic factor, is part of a response of astrocytes to cellular stress elicited by, e.g. cerebral injury, cytokines or phorbol ester, and mediated in part through protein kinase C.  相似文献   

2.
3.
The signaling pathways involved in insulin and glucagon regulation of CYP2E1 expression were examined in primary cultured rat hepatocytes. Insulin addition to primary cultured rat hepatocytes for 24 h resulted in an approximately 80% and >90% decrease in CYP2E1 mRNA levels at 1 and 10 nM insulin, respectively, relative to untreated cells. Addition of the phosphatidylinositol 3-kinase inhibitor wortmannin, or the Src kinase inhibitor geldanamycin, prior to insulin addition, inhibited the insulin-mediated decline in CYP2E1 mRNA. In contrast, treatment of cells with glucagon (100 nM), or the cAMP analogue dibutyryl-cAMP (50 microM), for 24 h increased CYP2E1 mRNA levels by approximately 7-fold. Addition of the protein kinase A inhibitor H89 prior to glucagon treatment attenuated the glucagon-mediated increase in CYP2E1 mRNA by approximately 70%. Glucagon (100 nM) opposed the effects of insulin (1 nM) on CYP2E1 mRNA expression and conversely, insulin blocked the effects of glucagon. These data provide compelling evidence for the regulation of CYP2E1 expression via mutually antagonistic signaling pathways involving insulin and glucagon.  相似文献   

4.
5.
6.
The repressor delta EF1 was discovered by its action on the DC5 fragment of the lens-specific delta 1-crystallin enhancer. C-proximal zinc fingers of delta EF1 were found responsible for binding to the DC5 fragment and had specificity to CACCT as revealed by selection of high-affinity binding sequences from a random oligonucleotide pool. CACCT is present not only in DC5 but also in the E2 box (CACCTG) elements which are the binding sites of various basic helix-loop-helix activators and also the target of an unidentified repressor, raising the possibility that delta EF1 accounts for the E2 box repressor activity. delta EF1 competed with E47 for binding to an E2 box sequence in vitro. In lymphoid cells, endogenous delta EF1 activity as a repressor was detectable, and exogenous delta EF1 repressed immunoglobulin kappa enhancer by binding to the kappa E2 site. Moreover, delta EF1 repressed MyoD-dependent activation of the muscle creatine kinase enhancer and MyoD-induced myogenesis of 10T1/2 cells. Thus, delta EF1 counteracts basic helix-loop-helix activators through binding site competition and fulfills the conditions of the E2 box repressor. In embryonic tissues, the most prominent site of delta EF1 expression is the myotome. Myotomal expression as well as the above results argues for a significant contribution of delta EF1 in regulation of embryonic myogenesis through the modulation of the actions of MyoD family proteins.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
CYP2E1 metabolizes ethanol leading to production of reactive oxygen species (ROS) and acetaldehyde, which are known to cause not only liver damage but also toxicity to other organs. However, the signaling pathways involved in CYP2E1 regulation by ethanol are not clear, especially in extra-hepatic cells. This study was designed to examine the role of CYP2E1 in ethanol-mediated oxidative stress and cytotoxicity, as well as signaling pathways by which ethanol regulates CYP2E1 in extra-hepatic cells. In this study, we used astrocytic and monocytic cell lines, because they are important cells in central nervous system . Our results showed that 100 mM ethanol significantly induced oxidative stress, apoptosis, and cell death at 24 h in the SVGA astrocytic cell line, which was rescued by a CYP2E1 selective inhibitor, diallyl sulfide (DAS), CYP2E1 siRNA, and antioxidants (vitamins C and E). Further, we showed that DAS and vitamin C abrogated ethanol-mediated (50 mℳ) induction of CYP2E1 at 6 h, as well as production of ROS at 2 h, suggesting the role of oxidative stress in ethanol-mediated induction of CYP2E1. We then investigated the role of the protein kinase C/c-Jun N-terminal kinase/specificity protein1 (PKC/JNK/SP1) pathway in oxidative stress-mediated CYP2E1 induction. Our results showed that staurosporine, a non-specific inhibitor of PKC, as well as specific PKCζ inhibitor and PKCζ siRNA, abolished ethanol-induced CYP2E1 expression. In addition, inhibitors of JNK (SP600125) and SP1 (mithramycin A) completely abrogated induction of CYP2E1 by ethanol in SVGA astrocytes. Subsequently, we showed that CYP2E1 is also responsible for ethanol-mediated oxidative stress and apoptotic cell death in U937 monocytic cell lines. Finally, our results showed that PKC/JNK/SP1 pathway is also involved in regulation of CYP2E1 in U937 cells. This study has clinical implications with respect to alcohol-associated neuroinflammatory toxicity among alcohol users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号