首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
地-气温差指标表征作物水分亏缺状况已经被广泛研究,但地-气温差随作物生育进程的变化特征及其影响因子的观测研究仍较少,制约着地-气温差的准确模拟.基于夏玉米2014年三叶期和2015年拔节期的5个灌溉水分控制试验资料的研究表明: 随着夏玉米生育进程的推进,土壤水分的变化显著影响了夏玉米农田的地-气温差,土壤水分亏缺越严重,地-气温差越高.在整个水分处理期间,归一化植被指数是地-气温差的主要影响因子且两者呈显著的线性关系,但不同生育期地-气温差还受其他因子的影响:三叶期后受冠层吸收光合有效辐射比影响且呈显著的线性关系,三叶期至拔节期则受土壤相对湿度和空气相对湿度的影响且呈显著的线性关系.在此基础上,基于2014年试验资料建立了夏玉米全生育期地-气温差模拟模型、营养生长期地-气温差模拟模型和生殖生长期地-气温差模拟模型,并利用2015年夏玉米拔节期5个灌溉水分控制试验资料进行了模型验证,结果表明,夏玉米全生育期地-气温差模型可以解释2015年地-气温差变异的63%,但地-气温差分生育期模拟模型,即营养生长期地-气温差模拟模型和生殖生长期地-气温差模拟模型综合的模拟结果则可解释2015年地-气温差变异的79%.研究结果为基于地-气温差的作物干旱指标定量评估作物干旱提供了依据.  相似文献   

2.
APSIM模型对华北平原小麦-玉米连作系统的适用性   总被引:10,自引:0,他引:10  
王琳  郑有飞  于强  王恩利 《应用生态学报》2007,18(11):2480-2486
利用中国科学院禹城试验站1999—2001年大田试验及2002—2003年水分池处理数据进行APSIM模型参数的调试及验证,检验其对华北地区冬小麦-夏玉米连作系统的适用性.模型调试和验证结果表明:禹城1999—2000年大田试验的作物叶面积指数、生物量和土壤含水量模拟结果的平均误差分别为27.61%、24.59%和7.68%,2000—2001年分别为32.65%、35.95%和10.26%;2002—2003年高水分处理的作物叶面积指数和生物量模拟结果的平均误差分别为26.65%和14.52%,低水分处理分别为23.91%和27.93%.叶面积指数、生物量的模拟值和实测值拟合较好,除2000—2001年叶面积指数的决定系数为0.78外,其他处理均大于0.85.表明APSIM模型在模拟华北地区小麦-玉米连作系统的作物生物量和土壤水分方面具有较好的准确性,对叶面积指数模拟误差稍大.  相似文献   

3.
梁友嘉  刘丽珺 《生态学报》2020,40(24):9252-9259
社会-生态系统(SES)模拟模型是景观格局分析和决策的有效工具,能表征景观格局变化的社会-生态效应及景观决策的复杂反馈机制。文献综述了森林-农业景观格局的SES模型方法进展发现:(1)多数模型对景观过程与社会经济决策的反馈关系分析不足;(2)应集成多种情景模拟和景观效应分析方法,完善现有SES模型的理论方法基础;(3)通过集成格局优化模型和自主体模型会有效改进SES模型功能,具体途径包括:集成情景-生态效应的景观格局模拟方法、完善景观决策的理论基础、加强集成模型的不确定性分析、降低模型复杂性和综合定性-定量数据等。研究结果有助于理解多尺度森林-农业景观格局在社会-生态系统中的重要作用,能更好地支持跨学科集成模型开发与应用。  相似文献   

4.
刘文兆 《生态学报》2005,25(11):2947-2953
把土壤-植物系统水分运移作为一维水流运动由阻容电路进行模拟,在于将D arcy-R ichards方程从对单点的描述扩展到对一段流路的描述。由此出发,考虑到水流的非稳态性,某一流路的水阻定义为其水势差与平均流量之比,水容为其贮水量对平均水势的导数。与D arcy-R ichards方程相对应,水阻、时间常数分别为导水度、水分扩散度的倒数,相应地单位化的水阻率、比时间常数分别为导水率、水分扩散率的倒数。把SP系统沿水流通道分为若干部分,每一局部的水阻与其水容相并联,各局部间相串联。在此基础上,文章给出了土壤-植物系统水流模拟通式、总水容与分水容间的关系式、总水阻与分水阻间的关系式及特定条件下叶水势随时间变化的关系式。  相似文献   

5.
根-土界面水分再分配研究现状与展望   总被引:14,自引:0,他引:14  
陈亚明  傅华  张荣  万长贵 《生态学报》2004,24(5):1040-1047
对根 -土界面水分再分配的研究背景 (概念、发现及证据 )、普遍性与再分配的水量及其生理生态学意义 (对相邻植物利用水分、根际活动、土壤 -植物 -大气系统水分传输和根系可塑性发育的促进效应 )等进行了深入论述 ,对水分再分配的认识和研究方法进行了探讨 ,并对未来的相关研究进行了展望  相似文献   

6.
吸收和传导水分一直被视为植物根系最主要的功能之一,而人们对根系在某些情况下还可以向土壤释放水分的事实及其对植物生长和生态系统功能的影响了解得还很不充分,尽管这样的证据由来已久。土壤-根系统水分再分配(Hydraulic redistribution, HR)是近20年间被发现和证实的,指水分从土壤中较湿的部分经由植物的根系传导而运动到土壤中较干的部分,通常发生在蒸腾减弱的夜间,可以沿水势梯度下降的方向而在不同土层间向上向下或侧向运动。HR研究揭示了土壤-植物-大气连续体中有时会存在土壤-根-土壤的水流小通路,细化了土壤-根系统中水分储存和运输的时空动态和机制。土壤水分状况的连续监测、根木质部液流测量、稳定性同位素技术的使用构成了HR实验研究的三大手段。当土壤中深层水分充足的时候,HR可以提高根系吸收和传导水分的效率,有利于植物充分利用资源,延长了浅层土壤的水分可利用期,有利于维持植物组织的生理活性和水流传导;旱季后降水来临的时候,HR可以将一部分降水转移到深层土壤,增加了可利用性水分的总量。对于干旱半干旱的沙地和草原、季节性干旱的森林等类型,HR过程可能对生态系统水分循环产生重要影响。有必要在国内针对这些生态系统展开深入的实验研究,同时探索将HR过程适当结合到生态系统模型和水文模型中,从而更准确地研究和预测群落内植物水分关系和生态系统水分动态。此外,结合农林设计、植被恢复、生态需水量估算和农业节水等方面进行的HR研究也值得深入探索。  相似文献   

7.
提出一个改进的下丘脑-垂体-甲状腺轴的数学模型.该模型既考虑了此分泌调节系统各激素之间的激活和反馈作用,也考虑了甲状腺激素与蛋白质结合的动力学过程.由该模型推导的结果与实验结果符合得很好.  相似文献   

8.
土壤-植物-大气连续体(SPAC)中水循环是水文学和生态学研究的重要内容,氢氧稳定同位素在不同水体中组成特征的差异可以指示水分循环过程.本研究通过分析成都平原区亚热带常绿阔叶林中降水、土壤水、植物水的同位素组成,探讨SPAC系统中水分的氢氧稳定同位素演化特征,揭示区域水循环不同界面过程.结果 表明:研究区雨季大气降水线...  相似文献   

9.
植被对近地面层水热交换影响的参数化模型   总被引:8,自引:0,他引:8  
应用植被对地表面与大气之间水热交换影响的参数化模型,研究了不同植被类型的覆盖度、土壤湿度下垫面的土壤温度、叶温、近地面层气温及地表面与大气之间热量和水分交换,并一相应的观测资料进行了比较,结果表明,模拟不同植被的不同植被的温湿状况、辐射特征和能量平衡关系是合理的。因此,该参数化模型可于中尺度气象模型、气候模拟和环境生态学的研究。  相似文献   

10.
干旱地区生态-生产-生活承载力变化情势与演变情景分析   总被引:19,自引:0,他引:19  
方创琳  鲍超  张传国 《生态学报》2003,23(9):1915-1923
干旱地区实现可持续发展的重要途径在于协调生态系统、生产系统和生活系统三者之间的关系,提高生态承载力、生产承载力和生活承载力,促进三大系统和谐高效运行。以干旱地区塔里木河下游尉犁地区为例,探讨了生态-生产-生活系统承载力的基本内涵及其相互作用的基本特点,选取生态-生产-生活系统承载力的综合测度指标,采用状态空间的理想点法求解出生态-生产-生活系统承载力的理想状态值和实际指数值,综合评估了生态-生产-生活系统承载力的现状情势,进而采用多模型互补对接支持下的系统动力学模型预测未来30a塔里木河下游尉犁地区生态-生产-生活承载力变化的总体变化情景。结果认为,在不同生活水平下的塔里木河下游生态-生产-生活承载力目前均处于超载状态,干旱脆弱的生态环境严重制约着生态承载力的提高,经济发展水平低下限制着生产系统承载力的提升,人口素质和生活质量低下成为制约生活承载力提高的长期因素,但未来30a生态-生产-生活承载力的整体超载状况将趋于缓解,自2009年起的整体承载力将处于可载状态,居民生活水平有望达到小康标准,到2054年以后在可载状态下居民生活水平有望达到富裕和现代化标准,但尚须做数百年的长期努力。  相似文献   

11.
Hydrological parameters can potentially have an overwhelming influence on sedimentary assemblages of Cladocera at certain sampling sites that can cause problems for palaeoenvironmental reconstructions. We applied a previously developed Cladocera-based inference model of water depth and a mean July air temperature transfer function developed in this study to a surface sediment dataset of fossil Cladocera from a lake in eastern Finland aiming to investigate the influence of stream flow and water depth on reconstruction results. The developed temperature-inference model, using the weighted averaging-partial least squares technique, had relatively favourable performance statistics suggesting that it is valid in means of performing temperature estimations. When the temperature model was applied to the intralake samples, the lotic samples had inferred values mostly within the model??s prediction error and only one lotic sample showed an underestimated temperature. Samples taken from depths over ~3 m inferred generally underestimated temperatures, although most of the values were within the model??s prediction error. The water depth reconstructions correlated significantly with the measured water depth, but the shallowest samples and most of the lotic samples yielded overestimated inferred values and the samples taken from depths >5 m showed underestimated values. In both reconstruction sets, the inferred values were underestimated in samples taken from deeper sites. Based on the present results, it may be recommendable that downcore sediment samples should be taken from intermediate depths, where also the diversity is higher, and deepest sites and inflows should be avoided. However, more research is needed to validate these results in a larger geographical context.  相似文献   

12.
Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.  相似文献   

13.
F Bordi  C Cametti    A Naglieri 《Biophysical journal》1998,74(3):1358-1370
The current-voltage relationships of model bilayer membranes have been measured in various phospholipid systems, under the influence of both a gradient of potential and an ionic concentration, in order to describe the ion translocation through hydrated transient defects (water channels) across the bilayer formed because of lipid structure fluctuations and induced by temperature. The results have been analyzed in the light of a statistical rate theory for the transport process across a lipid bilayer, recently proposed by Skinner et al. (1993). In order to take into account the observed I-V curves and in particular the deviation from an ohmic behavior observed at high potential values, the original model has been modified, and a new version has been proposed by introducing an additional kinetic process. In this way, a very good agreement with the experimental values has been obtained for all of the systems we have investigated (dimyristoylphosphatidyl ethanolamine bilayers and mixed systems composed by dimyristoylphosphatidyl ethanolamine/dimyristoylphosphatidylcholine mixtures and dimyristoylphosphatidyl ethanolamine/phosphatidic acid dipalmitoyl mixtures). The rate constants governing the reactions at the bilayer interfaces have been evaluated for K+ and Cl- ions, as a function of temperature, from 5 to 35 degrees C and bulk ionic concentrations from 0.02 to 0.2 M. Finally, a comparison between the original model of Skinner and the modified version is presented, and the advantages of this new formulation are briefly discussed.  相似文献   

14.
Many freshwater zooplankton species perform a diel vertical migration (DVM) and spend the day within the lower, colder hypolimnion of stratified lakes. Trade-offs that arise from this migration have already attracted much attention and the cold temperature in the hypolimnion is thought to be the main cost of this behaviour. In this study we additionally looked at the extra costs daphnids have from being exposed to a fluctuating temperature regime (cold during the day and warm during the night) which is less well studied until today. In our experiment Daphnia hyalina Leydig and Daphnia magna Straus either spent 24 h in constant warm water (19 °C), 24 h in constant cold water (12 °C), or spent 12 h in warm and 12 h in cold water in an alternating way (fluctuating temperature regime). We expected the values of the life history parameters of Daphnia in the fluctuating temperature regime to be exactly halfway between the values of the life history parameters in the warm and cold treatments because the daphnids spent exactly half of the time in warm water, and half of the time in cold water. Concordant with earlier studies our results showed that age at first reproduction and egg development time were reduced at higher temperatures. In the fluctuating temperature regime the values of both parameters were exactly halfway between the values at permanently warm and cold temperature regimes. In contrast, somatic growth was higher at higher temperatures but was lower in the fluctuating temperature regime than expected from the mean somatic growth rate. This suggests that a fluctuating temperature regime experienced by migrating daphnids in stratified lakes involves additional costs for the daphnids.  相似文献   

15.
The one‐dimensional numerical simulation model of reservoir hydrodynamics, DYRESM, is used to examine the effects of Retention Time (RT) on reservoir stratification. The model is verified using data from 3 years of high flow (short retention time, RT), on two reservoirs in the Czech Republic. The verified model was used to make a systematic series of simulations with varying RT, outlet location and inflow temperature in order to gauge the affect on heat budgets, temperature stratification, flows and mixing in deep valley reservoirs. The prototype examples corresponded to two temperate and one subtropical reservoir. The results show important effects of RT on reservoir hydrodynamics up to RT = 200, but a leveling off for RT > 400. Temperature stratification and hydrodynamic conditions are shown to be very sensitive to the inflow temperature and outlet depth. Results indicate that the energy released by large inflows is a major factor in determining the degree of mixing, and hence lower RT values lead to a weaker stratification in general. However, the height of withdrawal can have a significant impact on overall temperature and hence stratification. For example, large withdrawals from a deep outlet can lead to a reservoir with warmer average temperature by removing large amounts of cooler bottom water. Similarly, surface withdrawals may remove warmer water leading to a cooler average temperature. These effects are moderated by inflow temperatures and surface heat exchanges. In this paper an attempt is made to quantify these effects and come up with some general rules of thumb as to how different management strategies might influence the reservoir's average structure.  相似文献   

16.
Natural DNAs and some polynucleotides organised in fiber present the A--B form transition at a relative humidity (r.h.) which depends on the temperature. A shift of the midpoint of that helix--helix transition to higher r.h. values is observed when the temperature is risen. It is shown that the average number of water molecules associated to a nucleotide pair is the relevant parameter for the A-B transition and that this parameter can be given a precise value by a combination of different r.h. and temperature values. The minimum number of water molecules necessary to get the B form depends on the base composition of the DNA. It is observed that AT base pairs have a higher affinity toward water molecules than GC base pairs. In the B form there are 27 water molecules per GC nucleotide pair and 44 per AT pair. Moreover, we noted that the fraction of nucleotides in the B form as a function of the average number of water molecules associated per base pair does not depend on the temperature. The A helical form is obtained with about 11 water molecules per nucleotide pair and this number is not very sensitive to the base composition of DNA.  相似文献   

17.
The temperature and cell volume dependence of the NMR water proton line-width, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon deoxygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters are affected only slightly by a 10-20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the "bound" water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at -15 degrees C to 500 Hz at -36 degrees C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at -35 degrees C for measurements at 44.4 MHz and -50 degrees C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irrotationally bound water, is altered during the sickling process.  相似文献   

18.
The effect of several cell-level parameters on the predicted optimal cooling rate B(opt) of an arbitrary biological system has been studied using a well-defined water transport model. An extensive investigation of the water transport model revealed three key cell level parameters: reference permeability of the membrane to water L(pg), apparent activation energy E(Lp), and the ratio of the available surface area for water transport to the initial volume of intracellular water (SA/WV). We defined B(opt) as the "highest" cooling rate at which a predefined percent of the initial water volume is trapped inside the cell (values ranging from 5% to 80%) at a predefined end temperature (values ranging from -5 degrees C to -40 degrees C). Irrespective of the choice of the percent of initial water volume trapped and the end temperature, an exact and linear relationship exists between L(pg), SA/WV, and B(opt0. However, a nonlinear and inverse relationship is found between E(Lp) and B(opt). Remarkably, for a variety of biological systems a comparison of the published experimentally determined values of B(opt) agreed quite closely with numerically predicted B(opt) values when the model assumed 5% of initial water is trapped inside the cell at a temperature of -15 degrees C. This close agreement between the experimental and model predicted optimal cooling rates is used to develop a generic optimal cooling rate chart and a generic optimal cooling rate equation that greatly simplifies the prediction of the optimal rate of freezing of biological systems.  相似文献   

19.
Yang D G  Wei Q W  Chen X H  Liu J Y  Zhu Y J  Wang K 《农业工程》2007,27(3):862-868
The spawning runs of Chinese Sturgeon (CS; Acipenser sinensis) were observed 37 times below Gezhouba Dam of Yangtze River between 1983 and 2004. Five hydrological factors (water temperature, water level, flow discharge, silt content and current velocity) were monitored on a daily basis at the spawning ground between October and November for 22 consecutive years (1983–2004). The effect of current velocity on the spawning ground at the bottom layer of the river, where CS was spawning for four years, was measured (1996–1999). The authors of this study analyzed the relationship between the five hydrological factors and the respective spawning runs. Twenty-two years of continuous observations indicated that the daily mean values of all the five hydrological factors fluctuated within a certain range when CS was spawning. It was concluded that the optimal values for the hydrological factors during the spawning runs are 18.0–20.0°C for temperature, 14100 m3/s for discharge volume, 42.0–45.0 m for water level above the sea level, and 0.2–0.3 kg/m3 for silt content in the water, wherein the current velocity above the bottom layer to stimulate the fish to spawn should be between 1.0–1.7 m/s. The optimal water temperature might provide an essential precondition for other factors to trigger spawning. As water temperature reaches the optimal values and most of the other parameters are at the brink of deviation from their optimal range of values (water level, current velocity and silt content in the water), CS would begin to spawn. By 2009, when the Yangtze Three Gorges Project, which is located 45 km upstream of the Gezhouba Dam, is completed and begins to operate normally, changes in the downstream water temperature are expected to occur, which may have a negative effect on the development of gonad and the stimulation of spawning of CS; however, the anticipated decrease of the silt content in the water may be considered favorable for the performance of the spawning site.  相似文献   

20.
Determining the influence of soil environmental factors on degradation of Cry1Ac protein from Bt cotton residues is vital for assessing the ecological risks of this commercialized transgenic crop. In this study, the degradation of Cry1Ac protein in leaves and in buds of Bt cotton in soil was evaluated under different soil water content and temperature settings in the laboratory. An exponential model and a shift-log model were used to fit the degradation dynamics of Cry1Ac protein and estimate the DT50 and DT90 values. The results showed that Cry1Ac protein in the leaves and buds underwent rapid degradation in the early stage (before day 48), followed by a slow decline in the later stage under different soil water content and temperature. Cry1Ac protein degraded the most rapidly in the early stage at 35°C with 70% soil water holding capacity. The DT50 values were 12.29 d and 10.17 d and the DT90 values were 41.06 d and 33.96 d in the leaves and buds, respectively. Our findings indicated that the soil temperature was a major factor influencing the degradation of Cry1Ac protein from Bt cotton residues. Additionally, the relative higher temperature (25°C and 35°C) was found to be more conducive to degradation of Cry1Ac protein in the soil and the greater water content (100%WHC) retarded the process. These findings suggested that under appropriate soil temperature and water content, Cry1Ac protein from Bt cotton residues will not persist and accumulate in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号