首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Oncostatin M (OSM), a member of the IL-6 superfamily of cytokines, is elevated in patients with rheumatoid arthritis and, in synergy with IL-1, promotes cartilage degeneration by matrix metalloproteinases (MMPs). We have previously shown that OSM induces MMP and tissue inhibitor of metalloproteinase-3 (TIMP-3) gene expression in chondrocytes by protein tyrosine kinase-dependent mechanisms. In the present study, we investigated signaling pathways regulating the induction of MMP and TIMP-3 genes by OSM. We demonstrate that OSM rapidly stimulated phosphorylation of Janus kinase (JAK) 1, JAK2, JAK3, and STAT1 as well as extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase 1/2 mitogen-activated protein kinases in primary bovine and human chondrocytes. A JAK3-specific inhibitor blocked OSM-stimulated STAT1 tyrosine phosphorylation, DNA-binding activity of STAT1 as well as collagenase-1 (MMP-1), stromelysin-1 (MMP-3), collagenase-3 (MMP-13), and TIMP-3 RNA expression. In contrast, a JAK2-specific inhibitor, AG490, had no impact on these events. OSM-induced ERK1/2 activation was also not affected by these inhibitors. Similarly, curcumin (diferuloylmethane), an anti-inflammatory agent, suppressed OSM-stimulated STAT1 phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation without affecting JAK1, JAK2, JAK3, ERK1/2, and p38 phosphorylation. Curcumin also inhibited OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression. Thus, OSM induces MMP and TIMP-3 genes in chondrocytes by activating JAK/STAT and mitogen-activated protein kinase signaling cascades, and interference with these pathways may be a useful approach to block the catabolic actions of OSM.  相似文献   

3.
4.
Chondrocyte apoptosis is mainly responsible for the progressive degeneration of cartilage in osteoarthritis (OA). Interleukin-1beta (IL-1β) was widely used as a modulating and chondrocyte apoptosis-inducing agent. Nicotine is able to confer resistance to apoptosis and promote cell survival in some cell lines, but its regulatory mechanism is ambiguous. We aimed to investigate the effect of nicotine on IL-1β-induced chondrocyte apoptosis and the mechanism underlying how nicotine antagonizes IL-1β-induced apoptosis of rat chondrocytes. Chondrocytes isolated from newborn rat joints were exposed to IL-1β. The cell viability was analyzed by the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide) assay, and the apoptotic cells were counted with DAPI staining. The levels of Akt, phosphorylated-Akt (p-Akt) and downstream protein targets of Akt were detected by western blotting. The results showed that nicotine neutralized the effect of IL-1β on chondrocytes by activating PI3K/Akt signaling pathways, including the PI3K/Akt/Bcl-2 pathway, to block IL-1β-induced cell apoptosis and the PI3K/Akt/p70S6K (p70S6 kinase)/S6 pathway for promoting protein synthesis, modulating its downstream effectors such as TIMP-1 and MMP-13. Activation of the PI3K/Akt pathway is, in part, required for the effect of nicotine on IL-1β-induced chondrocyte apoptosis in a rat model of osteoarthritis.  相似文献   

5.
6.
7.

Objectives

Osteoarthritis (OA) is a chronic joint disease, characterized by a progressive loss of articular cartilage. During OA, proinflammatory cytokines, such as interleukin IL-1, induce the expression of matrix metalloproteinases (MMPs) in chondrocytes, contributing thus to the extracellular matrix (ECM) degradation. Members of Serpine family, including plasminogen activator inhibitors have been reported to participate in ECM regulation. The aim of this study was to assess the expression of serpin peptidase inhibitor clade E member 2 (SERPINE2), under basal conditions and in response to increasing doses of IL-1α, in human cultured chondrocytes. We also examined the effects of SERPINE2 on IL-1α-induced MMP-13 expression. For completeness, the signaling pathway involved in this process was also explored.

Methods

SERPINE2 mRNA and protein expression were evaluated by RT-qPCR and western blot analysis in human T/C-28a2 cell line and human primary chondrocytes. These cells were treated with human recombinant SERPINE2, alone or in combination with IL-1α. ERK 1/2, NFκB and AP-1 activation were assessed by western blot analysis.

Results

Human cultured chondrocytes express SERPINE2 in basal condition. This expression increased in response to IL-1α stimulation. In addition, recombinant SERPINE2 induced a clear inhibition of MMP-13 expression in IL-1α-stimulated chondrocytes. This inhibitory effect is likely regulated through a pathway involving ERK 1/2, NF-κB and AP-1.

Conclusions

Taken together, these data demonstrate that SERPINE2 might prevent cartilage catabolism by inhibiting the expression of MMP-13, one of the most relevant collagenases, involved in cartilage breakdown in OA.  相似文献   

8.
9.
10.
Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-beta1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-beta1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-beta1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy.  相似文献   

11.
12.
13.
14.
Interleukin-1 (IL-1), IL-17 and tumor necrosis factor alpha (TNF-α) are the main proinflammatory cytokines implicated in cartilage breakdown by matrix metalloproteinase (MMPs) in arthritic joints. We studied the impact of an anti-neoplastic antibiotic, mithramycin, on the induction of MMPs in chondrocytes. MMP-3 and MMP-13 gene expression induced by IL-1β, TNF-α and IL-17 was downregulated by mithramycin in human chondrosarcoma SW1353 cells and in primary human and bovine femoral head chondrocytes. Constitutive and IL-1-stimulated MMP-13 levels in bovine and human cartilage explants were also suppressed. Mithramycin did not significantly affect the phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase. Despite effective inhibition of MMP expression by mithramycin and its potential to reduce cartilage degeneration, the agent might work through multiple unidentified mechanisms.  相似文献   

15.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

16.
Joint destruction in arthritis is in part due to the induction of matrix metalloproteinase (MMP) expression and their inhibitors, especially MMP-13 and -3, which directly degrade the cartilage matrix. Although IL-1β is considered as the main catabolic factor involved in MMP-13 and -3 expression, the role of PGE(2) remains controversial. The goal of this study was to determine the role of PGE(2) on MMP synthesis in articular chondrocytes using mice lacking microsomal PGE synthase-1 (mPGES-1), which catalyses the rate-limiting step of PGE(2) synthesis. MMP-3 and MMP-13 mRNA and protein expressions were assessed by real-time RT-PCR, immunoblotting, and ELISA in primary cultures of articular chondrocytes from mice with genetic deletion of mPGES-1. IL-1β-induced PGE(2) synthesis was dramatically reduced in mPGES-1(-/-) and mPGES-1(+/-) compared with mPGES-1(+/+) chondrocytes. A total of 10 ng/ml IL-1β increased MMP-3 and MMP-13 mRNA, protein expression, and release in mPGES-1(+/+) chondrocytes in a time-dependent manner. IL-1β-induced MMP-3 and MMP-13 mRNA expression, protein expression, and release decreased in mPGES-1(-/-) and mPGES-1(+/-) chondrocytes compared with mPGES-1(+/+) chondrocytes from 8 up to 24 h. Otherwise, MMP inhibition was partially reversed by addition of 10 ng/ml PGE(2) in mPGES-1(-/-) chondrocytes. Finally, in mPGES-1(-/-) chondrocytes treated by forskolin, MMP-3 protein expression was significantly decreased compared with wild-type, suggesting that PGE(2) regulates MMP-3 expression via a signaling pathway dependent on cAMP. These results demonstrate that PGE(2) plays a key role in the induction of MMP-3 and MMP-13 in an inflammatory context. Therefore, mPGES-1 could be considered as a critical target to counteract cartilage degradation in arthritis.  相似文献   

17.
Mechanical overloading of cartilage producing hydrostatic stress, tensile strain, and fluid flow can adversely affect chondrocyte function and precipitate osteoarthritis (OA). Application of high fluid shear stress to chondrocytes recapitulates the earmarks of OA, as evidenced by the release of pro-inflammatory mediators, matrix degradation, and chondrocyte apoptosis. Elevated levels of cyclooxygenase-2 (COX-2), prostaglandin (PG) E2, and interleukin (IL)-6 have been reported in OA cartilage in vivo, and in shear-activated chondrocytes in vitro. Although PGE2 positively regulates IL-6 synthesis in chondrocytes, the underlying signaling pathway of shear-induced IL-6 expression remains unknown. Using the human T/C-28a2 chondrocyte cell line as a model system, we demonstrate that COX-2-derived PGE2 signals via up-regulation of E prostanoid (EP) 2 and down-regulation of EP3 receptors to raise intracellular cAMP, and activate protein kinase A (PKA) and phosphatidylinositol 3-kinase (PI3-K)/Akt pathways. PKA and PI3-K/Akt transactivate the NF-κB p65 subunit via phosphorylation at Ser-276 and Ser-536, respectively. Binding of p65 to the IL-6 promoter elicits IL-6 synthesis in sheared chondrocytes. Selective knockdown of EP2 or ectopic expression of EP3 blocks PKA- and PI3-K/Akt-dependent p65 activation and markedly diminishes shear-induced IL-6 expression. Similar inhibitory effects on IL-6 synthesis were observed by inhibiting PKA, PI3-K, or NF-κB using pharmacological and/or genetic interventions. Reconstructing the signaling network regulating shear-induced IL-6 expression in chondrocytes may provide insights for developing therapeutic strategies for arthritic disorders and for culturing artificial cartilage in bioreactors.  相似文献   

18.
It has been suggested that PI3K participates in TLR signaling. However, identifying specific roles for individual PI3K subtypes in signaling has remained elusive. In macrophages from the p110gamma(-/-) mouse, LPS-induced phosphorylation of Akt occurred normally despite the fact that the action of anaphylatoxin C5a was impaired markedly. In RAW 264.7 cells expressing short hairpin RNA that targets p110beta, LPS-induced phosphorylation of Akt was significantly attenuated. In contrast, the LPS action was not impaired, but was rather augmented in the p110alpha-deficient cells. Previous pharmacologic studies have suggested that a PI3K-Akt pathway negatively regulates TLR-induced inducible NO synthase expression and cytokine production. In the p110beta-deficient cells, inducible NO synthase expression and IL-12 production upon stimulation by LPS were increased, whereas LPS-induced expression of COX-2 and activation of MAPKs were unaffected. Together, the results suggest a specific function of p110beta in the negative feedback regulation of TLR signaling.  相似文献   

19.
Mechanical overloading of articular cartilage producing hydrostatic stress, tensile strain, and fluid flow results in irreversible cartilage erosion and osteoarthritis (OA). Application of high fluid shear to chondrocytes recapitulates the earmarks of OA as evidenced by the induction of proinflammatory cytokines and prostaglandins, which are capable of inducing the expression of matrix-degrading enzymes. Matrix metalloproteinase-9 (MMP-9) synthesis is detected at early but not late stages of OA. However, the underlying mechanism(s) of the MMP-9 temporal regulation remains unknown. Using the T/C-28a2 chondrocyte cell line as a model system, we demonstrated that high fluid shear induces a marked increase in MMP-9 expression at short shear exposure times (3-6 h), which falls below basal levels after prolonged shear exposure (12-48 h). High fluid shear stress induced the rapid and sustained synthesis of IL-1β, activating PI3K, ERK1/2, and JNK, which are in turn responsible for MMP-9 expression. Prolonged shear exposure (>12 h) induced 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) synthesis, which exerted an antagonistic effect on IL-1β-mediated PI3K-, ERK1/2-, and JNK-dependent NF-κB activation, thereby suppressing MMP-9 expression in human chondrocytes. Reconstructing the signaling network that regulates shear-mediated MMP-9 expression in human chondrocytes may provide insights for developing strategies to treat arthritic disorders.  相似文献   

20.
Interleukin-7 (IL-7) is a cytokine that is required for T cell development and survival. The anti-apoptotic function of IL-7 is partly through induction of Bcl-2 synthesis and cytosolic retention of Bax. Here we show that the Bcl-2 homology 3 domain-only protein, Bad, is involved in cell death following IL-7 withdrawal from D1 cells, an IL-7-dependent murine thymocyte cell line. IL-7 stimulation resulted in the inactivation of Bad by phosphorylation at Ser-112, -136, and -155. The phosphoinositide 3-kinase (PI3K)/Akt pathway has been implicated previously in Bad phosphorylation. In response to IL-7, the PI3K/Akt pathway induced phosphorylation at Ser-136 and -155, but Ser-112 was partly independent of the PI3K/Akt pathway, indicating an as yet unknown pathway in this response. Following IL-7 withdrawal, dephosphorylated Bad translocated from cytosol to mitochondria, bound to Bcl-2, and accelerated cell death. Thus, the inactivation of Bad contributes to the survival function of IL-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号