首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA sequence analysis of a 3494-bp HindIII-Bc1I fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneurnoniae. In contrast to nifA andnifB which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifU ISVW operon, which is preceded by a putative σ54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifU I and nifW mutants as well as a nifU I/nifUII, double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifV?NifW?), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.  相似文献   

2.
Summary Strains with mutations in 23 of the 30 genes and open reading frames in the major nif gene cluster of A. vinelandii were tested for ability to grow on N-free medium with molybdenum (Nif phenotype), with vanadium (Vnf phenotype), or with neither metal present (Anf phenotype). As reported previously, nifE, nifty, nifU, nifS and nifV mutants were Nif (failed to grow on molybdenum) while nifM mutants were Nif, Vnf and Anf. nifV, nifS, and nifU mutants were found to be unable to grow on medium with or without vanadium, i.e. were Vnf Anf. Therefore neither vnf nor anf analogoues of nifU, nifS, nifV or nifM are expected to be present in A. vinelandii.  相似文献   

3.
The functionality of nitrogenase in diazotrophic bacteria is dependent upon nif genes other than the structural nifH, D, and K genes which encode the enzyme subunit proteins. Such genes are involved in the activation of nif gene expression, maturation of subunit proteins, cofactor biosynthesis, and electron transport. In this work, approximately 5500 base pairs located within the major nif gene cluster of Azospirillum brasilense Sp7 have been sequenced. The deduced open reading frames were compared to the nif gene products of Azotobacter vinelandii and other diazotrophs. This analysis indicates the presence of five ORFs encoding ORF2, nifU, nifS, nifV, and ORF4 in the same sequential organization as found in other organisms. Consensus σ54 and NifA binding sites are present in the putative promoter region upstream of ORF2 in the A. brasilense sequence. The nifV gene of A. brasilense but not nifU or nifS complemented corresponding mutants strains of A. vinelandii.  相似文献   

4.
To identify Rhodobacter capsulatus nif genes necessary for the alternative nitrogenase, strains carrying defined mutations in 32 genes and open reading frames of nif region A, B or C were constructed. The ability of these mutants to grow on nitrogen-free medium with molybdenum (Nif phenotype) or in a nifHDK deletion background on medium without molybdenum (Anf phenotype) was tested. Nine nif genes and nif-associated coding regions are absolutely essential for the alternative nitrogenase. These genes comprise nifV and nifB, the nif-specific ntr system (nifR1, R2, R4) and four open reading frames, which exhibit no homology to known genes. In addition, a significantly reduced activity of both the alternative nitrogenase and the molybdenum-dependent nitrogenase was found for fdxN mutants. By random Tn5 mutagenesis of a nifHDK deletion strain 42 Anf? mutants were isolated. Southern hybridization experiments demonstrated that 17 of these Tn5 mutants were localized in at least 13 different restriction fragments outside of known nif regions. Ten different Anf? Tn5 mutations are clustered on a 6 kb DNA fragment of the chromosome designated anf region A. DNA sequence analysis revealed that this region contained the structural genes of the alternative nitrogenase (anfHDGK). The identification of several Tn5 insertions mapping outside of anf region A indicated that at least 10 genes specific for the alternative nitrogenase are present in R. capsulatus.  相似文献   

5.
Summary The 17 kb region between the Bradyrhizobium japonicum nitrogenase genes (nifDK and nifH) was investigated for the presence of further nif or fix genes by site-directed insertion or deletion/replacement mutagenesis and interspecies hybridization. Mutant strains were tested for their ability to reduce acetylene in free-living, microaerobic culture (Nif phenotype) and in soybean root nodules (Fix phenotype). The presence of a gene, previously identified by hybridization with the Klebsiella pneumoniae nifB gene, was proved by isolation of a nifB insertion mutant which was completely Nif- and Fix-. Three other regions were found to be homologous to the K. pneumoniae genes nifE, nifN, and nifS, NifE and nifN insertion mutants were completely Nif-/Fix- whereas nifS mutants were leaky with 30% residual Fix activity. Taken together, the data show that the B. japonicum genome harbours a cluster of closely adjacent genes which are directly concerned with nitrogenase function.  相似文献   

6.
Summary Tn5 was introduced into Azotobacter vinelandii on a suicide vector, pGS9. Three Nif- mutants were found to carry Tn5 in nifH (MV6), in nifN (MV22), and in or near nifM (MV21), from the results of hybridisation experiments. For MV21 and MV22 this was also shown by complementation with the nif genes of Klebsiella pneumoniae on pRD1. MV6 failed to synthesis the nifH, D and K gene products. MV6 and MV22 fixed nitrogen in the absence of supplied molybdenum while mutant MV21 did not, suggesting that the nifM gene product may be required for the alternative nitrogenase system synthesised in azotobacteria under conditions of molybdenum deprivation. Reconstitution experiments with mutant extracts showed that MV22 (nifN -) lacked the FeMo cofactor and that MV21 (NifM-) synthesised inactive Fe protein. These biochemical phenotypes are identical to those of the K. pneumoniae nifN and nifM mutants, respectively, demonstrating that these genes have the same function in both K. pneumoniae and A. vinelandii. Complementation of the A. vinelandii mutants with pLAFR1 gene banks of A. vinelandii or a. chroococcum yielded three cosmids of interest. pLV10 complemented UW91, a nifH mutant, and corrected the defect in MV6 after recombination with the mutant genome. It also carried nifD (but not nifK) and about 18 kb of DNA upstream from nifH. pLV1 from the A. vinelandii gene bank complemented both MV21 and MV22 as did pLC11, isolated from the A. chroococcum gene bank. Both pLV1 and pLC11 carried part of the nif cluster downstream of nifHDK which also includes nifEN and nifMVS on about 22 kb of DNA.  相似文献   

7.
A spontaneous pleiotropic Nif- mutation in Rhodospirillum rubrum has been partially characterized biochemically and by complementation analysis with recombinant plasmids carrying Azotobacter vinelandii DNA in the vicinity of ORF12 [Jacobson et al. (1989) J. Bacteriol 171:1017–1027]. In addition to being unable to grow on N2 as a nitrogen source the phenotypic characterization of this and other metronidazole enriched spontaneous mutants showed (a) no nitrogenase activity, (b) the absence of NifHDK polypeptides, (c) a slower growth rate on NH inf4 sup+ , (d) approximately 50% higher glutamine synthetase (GS) activity than the wild-type, which was repressible, (e) an inability to switch-off GS activity in response to an NH inf4 sup+ up-shift, and (f) an inability to modify (32P-label) the GS polypeptide. The apparent relationship between the absence of nifHDK expression and the absence of GS adenylylation cannot be explained in terms of the current model for nif gene regulation. However, R. rubrum transconjugants receiving A. vinelandii DNA which originated immediately upstream from nifH, restored all aspects of the wild-type phenotype. These data suggest a here-to-fore unrecognized relationship between nif expression and GS switch-off (adenylylation) activity, and the existence of a previously unidentified regulatory locus in Azotobacter that complements this mutation.  相似文献   

8.
Summary Rhodobacter capsulatus genes homologous to Klebsiella pneumoniae nifE, nifN and nifX were identified by DNA sequence analysis of a 4282 bp fragment of nif region A. Four open reading frames coding for a 51188 (NifE), a 49459 (NifN), a 17459 (NifX) and a 17472 (ORF4) dalton protein were detected. A typical NifA activated consensus promoter and two imperfect putative NifA binding sites were located in the 377 bp sequence in front of the nifE coding region. Comparison of the deduced amino acid sequences of R. capsulatus NifE and NifN revealed homologies not only to analogous gene products of other organisms but also to the and subunits of the nitrogenase iron-molybdenum protein. In addition, the R. capsulatus nifE and nifN proteins shared considerable homology with each other. The map position of nifX downstream of nifEN corresponded in R. capsulatus and K. pneumoniae and the deduced molecular weights of both proteins were nearly identical. Nevertheless, R. capsulatus NifX was more related to the C-terminal end of NifY from K. pneumoniae than to NifX. A small domain of approximately 33 amino acid residues showing the highest degree of homology between NifY and NifX was also present in all nifB proteins analyzed so far. This homology indicated an evolutionary relationship of nifX, nifY and nifB and also suggested that NifX and NifY might play a role in maturation and/or stability of the iron-molybdenum cofactor. The open reading rame (ORF4) downstream of nifX in R. capsulatus is also present in Azotobacter vinelandii but not in K. pneumoniae. Interposon-induced insertion and deletion mutants proved that nifE and nifN were necessary for nitrogen fixation in R. capsulatus. In contrast, no essential role could be demonstrated for nifX and ORF4 whereas at least one gene downstream of ORF4 appeared to be important for nitrogen fixation.  相似文献   

9.
Summary The nucleotide sequence of a 4.1 kb DNA fragment containing the fixABC region of Azorhizobium caulinodans was established. The three gene products were very similar to the corresponding polypeptides of Rhizobium meliloti. The C-terminal domains of both fixB products displayed a high degree of similarity with the -subunits of rat and human electron transfer flavoproteins, suggesting a role for the FixB protein in a redox reaction. Two open reading frames (ORF) were found downstream of fixC. The first ORF was identified as fixX on the basis of sequence homology with fixX from several Rhizobium and Bradyrhizobium strains. The second ORF potentially encoded a 69 amino acid product and was found to be homologous to a DNA region in the Rhodobacter capsulatus nif cluster I. Insertion mutagenesis of the A. caulinodans fixX gene conferred a Nif phenotype to bacteria grown in the free-living state and a Fix phenotype in symbiotic association with the host plant Sesbania rostrata. A crude extract from the fixX mutant had no nitrogenase activity. Furthermore, data presented in this paper also indicate that the previously identified nifO gene located upstream of fixA was probably a homologue of the nifW gene of Klebsiella pneumoniae and Azotobacter vinelandii.  相似文献   

10.
Summary A DNA region showing homology to Klebsiella pneumoniae nifA and nifB is duplicated in Rhodobacter capsulatus. The two copies of this region are called nifA/nifB copy I and nifA/nifB copy II. Deletion mutagenesis demonstrated that either of the two copies is sufficient for growth in nitrogen-free medium. In contrast, a double deletion mutant turned out to be deficient in nitrogen fixation. The complete nucleotide sequence of a 4838 bp fragment containing nifA/nifB copy I was determined. Two open reading frames coding for a 59653 (NifA) and a 49453 (NifB) dalton protein could be detected. Comparison of the amino acid sequences revealed that the R. capsulatus nifA and nifB gene products are more closely related to the NifA and NifB proteins of Rhizobium meliloti and Rhizobium leguminosarum than to those of K. pneumoniae. A rho-independent termination signal and a typical nif promoter region containing a putative NifA binding site and a consensus nif promoter are located within the region between the R. capsulatus nifA and nifB genes. The nifB sequence is followed by an open reading frame (ORF1) coding for a 27721 dalton protein in nifA/nifB copy I. DNA sequence analysis of nifA/nifB copy II showed that both copies differ in the DNA region downstream of nifB and in the noncoding sequence in front of nifA. All other regions compared, i.e. the 5 part of nifA, the intergenic region and the 3 part of nifB, are identical in both copies.  相似文献   

11.
J. Oelze 《Plant and Soil》1991,137(1):135-138
The question, whetherAzotobacter vinelandii can provide fixed N for the growth of other organisms, was studied with mixed cultures ofA. vinelandii andRhodobacter capsulatus, grown with aeration in the light. N2-fixation byR. capsulatus was prevented by growing the cultures on either mannitol, glycerol or ethanol, which cannot be used by this organism. In the course of growth with mannitol, cell numbers of both organisms increased largely in parallel and attained a maximal ratio of about oneA. vinelandii per tenR. capsulatus. Prolonged growth of mixed cultures with mannitol did not lead to an adaptation ofR. capsulatus to this compound. After growth on either one of the three alcohols, mixed cultures exhibited almost twice as high protein levels as pure cultures ofA. vinelandii. Up to 80% of the protein of mixed cultures was incorporated intoR. capsulatus. The results suggest thatA. vinelandii provided an organic N-source for the growth ofR. capsulatus.  相似文献   

12.
Summary A molecular map was constructed linking the nitrogenase structural genes (nif) and nodulation genes (nod) in the white clover symbiont, Rhizobium trifolii. In R. trifolii strain ANU843 these two genetic regions are located some 16 kilobases (kb) apart on the 180 kb symbiotic (Sym) plasmid. The molecular linkage of nod and nif genetic regions was established by hybridization analysis using recombinant plasmids containing overlapping cloned sequences. Nodulation genes were located by means of a Tn5-induced nodulation-defective mutant that failed to induce clover root hair curling (Hac- phenotype). A cloned wild-type DNA fragment was shown to phenotypically correct the Hac- mutation by complementation. The nifHDK genes were cloned by positive hybridization to another R. trifolii nif-specific probe. Location of the nif genes relative to the nod genes was established by analysis of a Sym plasmid deletion derivative.  相似文献   

13.
DNA sequence analysis of a 12236 by fragment, which is located upstream of nifE in Rhodobacter capsulatus nif region A, revealed the presence of ten open reading frames. With the exception of fdxC and fdxN, which encode a plant-type and a bacterial-type ferredoxin, the deduced products of these coding regions exhibited no significant homology to known proteins. Analysis of defined insertion and deletion mutants demonstrated that six of these genes were required for nitrogen fixation. Therefore, we propose to call these genes rnfA, rnfB, rnfC, rnfD, rnfE and rnfF (for Rhodobacter nitrogen fixation). Secondary structure predictions suggested that the rnf genes encode four potential membrane proteins and two putative iron-sulphur proteins, which contain cysteine motifs (C-X2-C-X2-C-X3-C-P) typical for [4Fe-4S] proteins. Comparison of the in vivo and in vitro nitrogenase activities of fdxN and rnf mutants suggested that the products encoded by these genes are involved in electron transport to nitrogenase. In addition, these mutants were shown to contain significantly reduced amounts of nitrogenase. The hypothesis that this new class of nitrogen fixation genes encodes components of an electron transfer system to nitrogenase was corroborated by analysing the effect of metronidazole. Both the fdxN and rnf mutants had higher growth yields in the presence of metronidazole than the wild type, suggesting that these mutants contained lower amounts of reduced ferredoxins.  相似文献   

14.
Deletions of the nitrogen fixation (nif) region of the Klebsiella genome were isolated by selecting for resistance to virulent phages whose resistance loci are adjacent to nif. The extent of the various deletions was monitored by assaying several different enzymes or gene products coded for by this segment of DNA. Three classes of deletion mutants were detected: (1) gluconate-6-phosphate dehydrogenase minus (gnd?), histidine minus but histidinol dehydrogenase plus (his?, his D+), nitrogenase plus (nif+), shikimate utilization plus (shu+); (2) gnd?, his D?, nif?, shu+; (3) gnd?, his D?, nif?, shu?. From these studies we conclude that the cluster of nif genes essential for nitrogenase activity is located on the genetic linkage map of Klebsiella between his and shu; the gene order in this region in thus phage-resistance locus (rfb?), gnd, his operon, nif, shu. Genetic analysis substantiates the finding that the nif cluster is located proximally to the operator end of the his operon.  相似文献   

15.
Summary Rhodocyclus gelatinosus grew photosynthetically in the light and consumed H2 at a rate of about 665 nmol/min per mg protein. The uptake-hydrogenase (H2ase) was found to be membrane bound and insensitive to inhibition by CO. The structural genes of R. gelatinosus uptake-H2ase were isolated from a 40 kb cosmid gene library of R. gelatinosus DNA by hybridization with the structural genes of uptake-H2ase of Bradyrhizobium japonicum and Rhodobacter capsulatus. The R. gelatinosus genes were localized on two overlapping DNA restriction fragments subcloned into pUC18. Two open reading frames (ORF1 and ORF2) were observed. ORF1 contained 1080 nucleotides and encoded a 39.4 kDa protein. ORF2 had 1854 nucleotides and encoded a 68.5 kDa protein. Amino acid sequence analysis suggested that ORF1 and ORF2 corresponded to the small (HupS) and large (HupL) subunits, respectively, of R. gelatinosus uptake-H2ase. ORF1 was approximately 80% homologous with the small, and ORF2 was maximally 68% homologous with the large subunit of typical membrane-bound uptake-H2ases.  相似文献   

16.
The production of biomass, polysaccharide storage material and H2 from malate was studied in the wild-type and mutants RdcI, RdcII and RdcI/cII of Rhodobacter capsulatus. The mutants are defective in either copy I, copy II or both copies of the nitrogenase genes nifA and nifB. Stationary phase levels of biomass, polysaccharide and H2 were determined in phototrophic batch cultures grown with 30 mM of d,l-malate and either 2, 5, or 8 mM of ammonium or 7 mM of glutamate. Calculation of the amounts of malate converted into the three products revealed that, at 8 mM of ammonium and 7 mM of glutamate, malate consumption and product formation were balanced. But with decreasing ammonium concentrations malate not converted into biomass was utilized with decreasing efficiency in polysaccharide and H2 formation. This suggests formation of unknown products at the lower ammonium concentrations. Under conditions of optimal N supply, 80% of the malate not used for biomass production was converted by the wild-type and strain RdcII to H2 and CO2. Mutant RdcI exhibited slightly decreased H2 production. The double mutant did not evolve H2 but accumulated increased amounts of polysaccharide. However, the amounts of polysaccharide were lower than should be expected if all of the spare malate, not utilized by the double mutant for H2 production, was converted into storage material. This and incomplete conversion of malate into known products at low ammonium supplies suggests that polysaccharide accumulation does not compete with the process of H2 formation for malate.  相似文献   

17.
The NifS and NifU nitrogen fixation-specific gene products are required for the full activation of both the Fe-protein and MoFe-protein of nitrogenase from Azotobacter vinelandii. Because the two nitrogenase component proteins both require the assembly of [Fe-S]-containing clusters for their activation, it has been suggested that NifS and NifU could have complementary functions in the mobilization of sulfur and iron necessary for nitrogenase-specific [Fe-S] cluster assembly. The NifS protein has been shown to have cysteine desulfurase activity and can be used to supply sulfide for the in vitro catalytic formation of [Fe-S] clusters. The NifU protein was previously purified and shown to be a homodimer with a [2Fe-2S] cluster in each subunit. In the present work, primary sequence comparisons, amino acid substitution experiments, and optical and resonance Raman spectroscopic characterization of recombinantly produced NifU and NifU fragments are used to show that NifU has a modular structure. One module is contained in approximately the N-terminal third of NifU and is shown to provide a labile rubredoxin-like ferric-binding site. Cysteine residues Cys35, Cys62, and Cys106 are necessary for binding iron in the rubredoxin-like mode and visible extinction coefficients indicate that up to one ferric ion can be bound per NifU monomer. The second module is contained in approximately the C-terminal half of NifU and provides the [2Fe-2S] cluster-binding site. Cysteine residues Cys137, Cys139, Cys172, and Cys175 provide ligands to the [2Fe-2S] cluster. The cysteines involved in ligating the mononuclear Fe in the rubredoxin-like site and those that provide the [2Fe-2S] cluster ligands are all required for the full physiological function of NifU. The only two other cysteines contained within NifU, Cys272 and Cys275, are not necessary for iron binding at either site, nor are they required for the full physiological function of NifU. The results provide the basis for a model where iron bound in labile rubredoxin-like sites within NifU is used for [Fe-S] cluster formation. The [2Fe-2S] clusters contained within NifU are proposed to have a redox function involving the release of Fe from bacterioferritin and/or the release of Fe or an [Fe-S] cluster precursor from the rubredoxin-like binding site. Received: 27 October 1999 / Accepted: 30 November 1999  相似文献   

18.
Summary An hydrogenase-deficient (Hup) mutant of Rhodobacter capsulatus was obtained by adventitious insertion of IS21 DNA into an hydrogenase structural gene (hup) of the wild-type strain 1310. The resulting Hup mutant, strain JP91, selected by its inability to grow autotrophically (Aut phenotype) together with other Hup mutant strains obtained by classical ethyl methane sulphonate mutagenesis were used in R plasmid-mediated conjugation experiments to map the hup/aut loci on the chromosome of R. capsulatus. The hup genes tested in this study were found to cluster on the chromosome in the proximity of the his-1 marker. A cluster of hup genes comprising the structural genes was isolated from a gene bank constructed in the cosmid vector pHC79 with 40 kb insert DNA. The clustered hup genes, characterized by hybridization studies and complementation analyses of the R. capsulatus Hup mutants, span 15–20 kb of DNA.  相似文献   

19.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

20.
The pathway of electron transport to nitrogenase in the endophytic β-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号