首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Putative nicotine receptors in the human cerebral cortex were characterized with L-[3H]nicotine, L-[3H]Nicotine binding was enhanced by the addition of Ca2+ and abolished in the presence of Na3EDTA. Association and dissociation of the ligand were rapid at 25 degrees C with t1/2 values of 2 and 3 min, respectively. Saturation binding analysis revealed an apparent single class of sites with a dissociation constant of 5.6 nM and a Hill coefficient of 1.05. There was no effect of postmortem interval on the density of binding sites assayed up to 24 h in rat frontoparietal cortex. Nicotine binding in human cortical samples was also unaltered by increasing sampling delay. In human cortical membranes, binding site density decreased with normal aging. Receptor affinity and concentration in samples of frontal cortex (Brodmann area 10) from patients with Alzheimer's disease were comparable to age-matched control values. Samples of infratemporal cortex (Brodmann area 38) from patients with Alzheimer's disease had a 50% reduction in the number of L-[3H]nicotine sites. Choline acetyltransferase activity was significantly decreased in both cortical areas. Enzyme activities in the temporal pole were reduced to 20% of control values. These data indicate that postsynaptic nicotine receptors are spared in the frontal cortex in Alzheimer's disease. In the infratemporal cortex, significant numbers of receptors remain despite the severe reduction in choline acetyltransferase activity. Replacement therapy directed at these sites may be warranted in Alzheimer's disease.  相似文献   

2.
We have recently observed that cigarette smoking affects plasma androgen concentrations. The effects of nicotine and cotinine, two products of cigarette smoking, on testosterone metabolism were determined. The activity of delta 4 steroid 5 alpha-reductase, which converts testosterone to 5 alpha-dihydrotestosterone (DHT) was measured in isolated dog prostate nuclei using testosterone (0-200 nM) as substrate and NADPH as cofactor. Activity of 3 alpha-hydroxysteroid dehydrogenase (HSD), which converts DHT to 3 alpha-androstanediol (3 alpha-diol) and is a reversible enzyme, was measured in isolated dog prostate microsomes with DHT (0-20 microM) as substrate and NADPH as cofactor. When microsomal fractions were incubated for 1 hour with and without nicotine (0-50 microM) and cotinine (0-100 microM), enzyme activity of HSD was significantly suppressed (p less than 0.001). The Vmax was not affected significantly (p greater than 0.60) and Km increased with increasing concentrations of nicotine and cotinine (p less than 0.05). Both nicotine and cotinine are competitive inhibitors of HSD in dog prostate microsomes with Ki's of 61 and 89 microM, respectively. The apparent 5 alpha-reductase activity was unaffected by nicotine and cotinine. The inhibitors produced a marked effect on activity of HSD when used in concentrations achieved in humans who smoke cigarettes. The results suggest that nicotine and cotinine are competitive inhibitors of the HSD, an important enzyme involved in the metabolism of DHT and produce an accumulation of DHT. These products of cigarette smoking could alter androgen action in tissue such as skin and prostate.  相似文献   

3.
It has been reported that N-methylcarbamylcholine (MCC), a nicotinic agonist, binds to central nicotinic receptors and causes an increase of acetylcholine (ACh) release from certain central cholinergic nerve terminals. The present experiments determine whether these two phenomena change in response to the chronic administration of nicotine, a procedure known to result in an increase in nicotinic binding sites. Chronic nicotine caused a brain region-specific up-regulation of [3H]MCC sites; binding increased in the frontal cortex, parietal cortex, striatum, and hippocampus, but not in the occipital cortex or cerebellum. The effect of nicotine was selective to nicotinic binding sites, because muscarinic sites, both M1 ([ 3H]pirenzepine) and M2 ([3H]ACh), were unaffected by chronic nicotine treatment. MCC increased the release of ACh from the frontal cortex and hippocampus by a calcium-dependent mechanism; MCC did not alter ACh release from striatum or occipital cortex of control animals. The MCC-induced increase in ACh release was not apparent in those animals which had been treated with nicotine. There was a partial recovery of nicotinic autoreceptor function when animals were allowed to recover (4 days) following chronic nicotine treatment, but the density of binding sites remained increased compared to control. Chronic nicotine did not change the potassium-evoked release of ACh from the frontal cortex or hippocampus, but decreased this measure from striatum. It also decreased the ACh content of the striatum, but not that of the cortex or the hippocampus; the activity of choline acetyltransferase was not altered in any of the regions tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine‐A (saz‐A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self‐administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz‐A and varenicline maintain the density of nAChRs after their up‐regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz‐A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz‐A and varenicline each demonstrated anxiolytic effects in mice, but only saz‐A and nicotine attenuated the gain of weight over a 6‐week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz‐A, or drugs like it, may be useful in achieving long‐term abstinence from smoking.

  相似文献   


5.
The in vivo regulation of [3H]acetylcholine [( 3H]ACh) recognition sites on nicotinic receptors in rat brain was examined by administering drugs that increase stimulation of nicotinic cholinergic receptors, either directly or indirectly. After 10 days of treatment with the cholinesterase inhibitor diisopropyl fluorophosphate, [3H]ACh binding in the cortex, thalamus, striatum, and hypothalamus was decreased. Scatchard analyses indicated that the decrease in binding in the cortex was due to a reduction in the apparent density of [3H]ACh recognition sites. In contrast, after repeated administration of nicotine (5-21 days), the number of [3H]ACh recognition sites was increased in the cortex, thalamus, striatum, and hypothalamus. Similar effects were observed in the cortex and thalamus following repeated administration of the nicotinic agonist cytisin. The nicotinic antagonists mecamylamine and dihydro-beta-erythroidine did not alter [3H]ACh binding following 10-14 days of administration. Further, concurrent treatment with these antagonists and nicotine did not prevent the nicotine-induced increase in these binding sites. The data indicate that [3H]ACh recognition sites on nicotinic receptors are subject to up- and down-regulation, and that repeated administration of nicotine results in a signal for up-regulation, probably through protracted desensitization at the recognition site.  相似文献   

6.
Chronic nicotine exposure up-regulates neuronal nicotinic receptors, but the functional consequences for these receptors is less well understood. Following 2 weeks of nicotine or saline treatment by osmotic minipump, the functional activity of nicotinic receptors was measured by concentration-response curves for epibatidine-stimulated (86)Rb efflux. Nicotine-treated animals had a significantly higher maximal efflux in cerebral cortex and superior colliculus, but not in thalamus or interpeduncular nucleus plus medial habenula. This increase was confirmed in a separate experiment with stimulation by single concentrations of epibatidine (cortex, superior colliculus) or nicotine (cortex only). Chronic nicotine did not alter (86)Rb efflux stimulated by cytisine, an alpha3beta4-selective agonist, or by potassium chloride, in any region. Short-term (16 h) nicotine exposure caused no changes in either (86)Rb efflux or receptor binding measured with [(3)H]epibatidine. Binding was significantly increased after 2 weeks nicotine exposure in cortex, superior colliculus and thalamus, but not in interpeduncular nucleus plus medial habenula. The increases in epibatidine-stimulated (86)Rb efflux in the four regions tested was linearly correlated with the increases in [(3)H]epibatidine binding in these regions (R(2) = 0.91), suggesting that rat brain receptors up-regulated by chronic nicotine are active. These results have important consequences for understanding nicotinic receptor neurobiology in smokers and users of nicotine replacement therapy.  相似文献   

7.
In previous studies we documented an increase in the levels of the serotonin metabolite, 5-hydroxyindoleacetic acid, in the congenitally hyperammonemic sparse fur mouse. To extend these findings, brain serotonin receptors were studied in these animals. Radioligand binding assays were performed using [3H]ketanserin to label serotonin2 sites and 8-[3H]hydroxy(di-n-propylamino)tetralin to label serotonin1A sites in cortical membrane homogenates. The capacity (Bmax) for [3H]ketanserin binding was significantly lower (-21%; p less than 0.05) in sparse fur animals than in control animals; there was no change in affinity (KD). In contrast, the capacity for 8-[3H]hydroxy(di-n-propylamino)tetralin binding was significantly greater (26%; p less than 0.05) in sparse fur compared with control animals. No difference in affinity was observed. Using two behavioral assays, the functional responsiveness of these serotonin receptors was compared in sparse fur and control animals. Head twitch activity elicited by administration of the serotonin agonist quipazine was studied as a behavior mediated by serotonin2 receptors. Compared with controls, sparse fur mice demonstrated a significantly decreased head twitch response (p less than 0.005). Hypothermia elicited by administration of 8-hydroxy(di-n-propylamino)tetralin was studied as a physiologic response mediated by serotonin1A receptors. Although there were not overall group differences in the dose-response data, there was a significant increase in the hypothermia induced by 8-hydroxy(di-n-propylamino)tetralin in sparse fur compared with control mice (p less than 0.02) at the highest dose. These data provide further support for a link between hyperammonemia and alterations in the serotonin system.  相似文献   

8.
Regulation of Brain Nicotinic Receptors by Chronic Agonist Infusion   总被引:8,自引:2,他引:6  
Several studies have demonstrated that chronic treatment with nicotine elicits an increase in the number of brain nicotinic receptors. To determine whether this effect is elicited by other nicotinic agonists found in tobacco, the effects of chronic infusion with nicotine on brain nicotinic receptors were compared with those after anabasine and lobeline. C57BL/6 mice were infused with saline or equimolar doses (18.5 mumol/kg/h) of nicotine, anabasine, or lobeline for 8 days. Nicotinic receptors, quantified by the binding of [3H]nicotine and [125I]iodo-alpha-bungarotoxin (alpha-[125I]BTX), and muscarinic receptors, quantified by the binding of [3H]quinuclidinyl benzilate ([3H]QNB), were then assayed in eight brain regions. An increase in [3H]nicotine binding was observed in all regions except cerebellum following chronic infusion with nicotine and anabasine, whereas lobeline did not alter the number or affinity of these binding sites. This increase was due to changes in Bmax and not in the affinity of the receptor for the ligand (KD). A slight increase in alpha-[125I]BTX binding was observed in cortex following chronic anabasine infusion. [3H]QNB binding sites were largely unaltered following chronic infusion with any of the nicotinic analogs. The levels of the agonists in the brain were also determined after chronic treatment, and the amounts of lobeline and anabasine were found to be higher than that of nicotine. Thus, the failure of lobeline to elicit changes in nicotine binding is not due to reduced brain concentrations.  相似文献   

9.
The effects of nicotine on 5-hydroxytryptamine (5-HT) release from serotonergic nerve endings in rat dorsal hippocampal slices were studied. Nicotine (50-500 microM:) caused a concentration-dependent increase in 5-HT release. This effect was antagonised by mecamylamine (0.5 microM:), indicating an action at nicotinic receptors. Nicotine-evoked 5-HT release was not affected by tetrodotoxin (3 microM:), cadmium chloride (0.1 mM:), or the absence of Ca(2+) or Na(+) in the superfusion medium. Unexpectedly, higher concentrations of mecamylamine alone (1-50 microM:) increased 5-HT release. This suggested the presence of inhibitory input to 5-HT neurones and that these inhibitory neurones possess tonically active nicotinic receptors. The effect of mecamylamine (50 microM:) on 5-HT release was reduced by the muscarinic M(1) receptor agonist, McN-A-343 (100 microM:), but pirenzepine (0.005-1 microM:), which blocks M(1) receptors, alone increased 5-HT release. Hippocampal serotonergic neurones are known to possess both excitatory nicotinic receptors and inhibitory M(1) receptors. Although there may be several explanations for our results, one possible explanation is that nicotine stimulates 5-HT release by activating nicotinic heteroreceptors on 5-HT terminals. Mecamylamine (0.5 microM:) antagonises this effect, but higher concentrations increase 5-HT release indirectly by blocking the action of endogenous acetylcholine on nicotinic receptors situated on cholinergic neurones that provide muscarinic inhibitory input to 5-HT neurones.  相似文献   

10.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

11.
The radiolabeled thromboxane A2/prostaglandin H2 (TXA2/PGH2) agonist 125I-BOP bound to the TXA2/PGH2 receptor on human platelet membranes. Scatchard analysis showed that pretreatment of platelet membranes with the reducing agent dithiothreitol (DTT) (10 mM) for 10 min decreased maximal 125I-BOP binding (Bmax) from 1.51 +/- 0.11 pmol/mg to 0.51 +/- 0.05 pmol/mg (p = 0.001) and increased the affinity of the remaining binding sites (Kd = 647 +/- 64 pM (untreated), 363 +/- 46 pM (treated), p = 0.006). Prolonged incubation of membranes with DTT (10 mM) for 40 min further reduced the Bmax to 0.23 +/- 0.08 pmol/mg (p = 0.001 from untreated), and the binding affinity remained elevated (Kd = 334 +/- 117 pM, p = 0.035 from untreated). Kinetic analysis of 125I-BOP binding indicated that the apparent increase in binding affinity after DTT treatment was due exclusively to an increase in the rate of ligand-receptor association with no change in dissociation rate. The effects of DTT on 125I-BOP binding were dose-dependent with an EC50 of 8.1 +/- 0.2 mM. DTT inactivation of TXA2/PGH2 receptors was time-dependent with a second order rate constant (k2) of 0.123 M-1 s-1 at 20 degrees C. The platelet membrane 125I-BOP binding site was partially protected from DTT inactivation by prior occupation with the ligand. TXA2/PGH2 receptor protection by I-BOP was dose-dependent and linearly related (r = 0.97, p = 0.002) to the proportion of receptors occupied, but was incomplete since agonist occupation of 89% of the total number of receptors resulted in only a 38% protective effect. Inhibition of 125I-BOP binding after reduction with DTT could be made permanent by addition of the sulfhydryl alkylating agent N-ethylmaleimide (25 mM), but was completely reversed by reoxidation with dithionitrobenzoic acid (DTNB) (5 mM). Oxidation of untreated receptors with DTNB resulted in a 64% increase in 125I-BOP binding sites from 1.65 +/- 0.12 pmol/mg to 2.70 +/- 0.08 pmol/mg (p = 0.013) without affecting binding affinity. DTNB-induced increases in 125I-BOP binding were concentration-dependent with an EC50 of 668 +/- 106 microM and occurred in less than 1 min at 37 degrees C. In the absence of DTT, alkylation of free sulfhydryl groups with N-ethylmaleimide reduced 125I-BOP Bmax in platelet membranes to 0.85 +/- 0.08 pmol/mg (p = 0.003), but did not change the affinity of the remaining receptors. The EC50 for N-ethylmaleimide inactivation of TXA2/PGH2 receptors was 139 +/- 8 mM, and the k2 in time course experiments was 0.067 M-1 s-1 at 20 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
We have compared the characteristics of IGF-I and insulin receptors in placentas of normals and insulin dependent diabetic patients. Specific binding of both IGF-I and insulin in placental membranes from patients with good glycemic control (as reflected by blood hemoglobin content) was unaltered while that in the placental membranes from the patients with poor glycemic control was increased to approximately 20% of the normals. This observed small but significant (p less than 0.05) increase in binding of IGF-I and insulin to placental membranes from diabetic patients with poor glycemic control was further magnified, approximately twice (p less than 0.001) the normal, when the membrane receptors were purified by lectin chromatography. The kinetic analysis of IGF-I and insulin binding in both membranes and lectin purified receptors revealed that the increased binding of insulin and IGF-I to the placentas from diabetic patients with poor glycemic control was due to an approximately 2 fold increase (p less than 0.001-0.05) in the receptor numbers without any significant changes of the affinities. The molecular characteristics of the receptors in these diabetic patients, as revealed by the cross-linking studies, did not reveal any changes when compared to the normals. The parallel changes of IGF-I and insulin receptors, shown here, are in accordance with the homologous nature of these two receptors. The increased receptor numbers of these two interrelated hormones in placentas of diabetics with poor glycemic control may be relevant to the altered placental functions in diabetic pregnancy.  相似文献   

13.
The effects of long-term cigarette smoking on androgen hydroxylases and peripheral hormones were studied in male beagles. In the testis, chronic smoking of high nicotine/tar cigarettes was associated with decreased activity of the 7 alpha-hydroxylase active on testosterone (68% of control, P less than 0.05). Testicular 6 beta and 16 alpha-hydroxylases were not altered. The hepatic androgen 6 beta-hydroxylase activity in control animals was approximately 6 times the testis levels and was stimulated markedly by smoking. This increase ranged from 221% in the low nicotine/tar group (P less than 0.02) to 304% in the high nicotine/tar group (P less than 0.006). Serum testosterone levels were reduced to 54% of control (P less than 0.02) and prostate size to 44% (P less than 0.001) of control with heavy smoking. Serum LH levels were elevated with smoking. These results suggest that chronic cigarette smoking increased hepatic metabolism of testosterone. In addition, serum testosterone levels and prostate size decreased and LH levels increased. Whether the hepatic and the endocrine effects are causally related cannot be determined from this preliminary study.  相似文献   

14.
Recent studies have shown that nicotine, a major component of cigarette smoke, can stimulate the proliferation of non-neuronal cells. Cigarette smoking can promote a variety of pulmonary and cardiovascular diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and cancer. A predominant feature of COPD is airway remodeling, which includes increased airway smooth muscle (ASM) mass. The mechanisms underlying ASM remodeling in COPD have not yet been fully elucidated. Here, we show that nicotine induces a profound and time-dependent increase in DNA synthesis in rat airway smooth muscle cells (RASMCs) in vitro. Nicotine also significantly increased the number of RASMCs, which was associated with the increased expression of Cyclin D1, phosphorylation of the retinoblastoma protein (RB) and was dependent on the activation of Akt. The activation of Akt by nicotine occurred within minutes and depended upon the nicotinic acetylcholine receptors (nAchRs). Activated Akt increased the phosphorylation of downstream substrates such as GSK3β. Our data suggest that the binding of nicotine to the nAchRs on RASMCs can regulate cellular proliferation by activating the Akt pathway.  相似文献   

15.
We have investigated the effect of mineralocorticoids on beta-adrenergic receptors in cultured arterial smooth muscle cells. Mineralocorticoid (aldosterone) treatment resulted in a significant increase in beta-adrenergic receptors measured by [3H]dihydroalprenolol (DHA) binding. This effect required at least 20 hours of incubation with aldosterone and was completely blocked by cycloheximide (10 micrograms/ml), indicating protein synthesis was required for this response. Aldosterone at the concentration range of 10(-8)-10(-6) M increased [3H]DHA binding, but was ineffective at 10(-9) M. Scatchard analysis of [3H]DHA binding revealed that the observed significant increase in binding was due to an increased number of binding sites (P less than 0.05), and that the affinity was unchanged. The aldosterone (1 x 10(-8) M) effect was completely blocked by the combination of RU 38486 (10(-6) M) and spironolactone (10(-7) M), but not by the glucocorticoid antagonist RU 38486 alone. While basal c-AMP levels were not changed by aldosterone (10(-6) M) treatment, the isoproterenol (10(-6) M) stimulated level of c-AMP was significantly higher in cells treated with aldosterone (P less than 0.05). We conclude that aldosterone, acting through the mineralocorticoid receptor, has a direct effect on arterial smooth muscle cells mediated through modulation of beta-adrenergic receptors of these cells.  相似文献   

16.
Nicotine increases the number of neuronal nicotinic acetylcholine receptors (nAChRs) in brain. This study investigated the effects of chronic nicotine treatment on nAChRs expressed in primary cultured neurons. In particular, we studied the chronic effects of nicotine exposure on the total density, surface expression and turnover rate of heteromeric nAChRs. The receptor density was measured by [12?I]epibatidine ([12?I]EB) binding. Untreated and nicotine-treated neurons were compared from several regions of embryonic (E19) rat brain. Twelve days of treatment with 10 μM nicotine produced a twofold up-regulation of nAChRs. Biotinylation and whole-cell binding studies indicated that up-regulation resulted from an increase in the number of cell surface receptors as well as intracellular receptors. nAChR subunit composition in cortical and hippocampal neurons was assessed by immunoprecipitation with subunit-selective antibodies. These neurons contain predominantly α4, β2 and α5 subunits, but α2, α3, α6 and β4 subunits were also detected. Chronic nicotine exposure yielded a twofold increase in the β2-containing receptors and a smaller up-regulation in the α4-containing nAChRs. To explore the mechanisms of up-regulation we investigated the effects of nicotine on the receptor turnover rate. We found that the turnover rate of surface receptors was > 2 weeks and chronic nicotine exposure had no effect on this rate.  相似文献   

17.
18.
C E Hock  J C Passmore 《Life sciences》1985,37(21):1997-2003
We investigated the respective contributions of the renin-angiotensin and alpha-adrenergic systems to nicotine-induced, canine, renal vasoconstriction by using saralasin (4 micrograms/kg/min) and phentolamine (25 micrograms/kg/min) blockade respectively. Nicotine infusion (0.024 mg/kg/min) increased mean arterial blood pressure (MABP) (114 +/- 3.0 to 219 +/- 8.0 mmHg) and decreased total renal blood flow (TRBF) (3.12 +/- 0.34 to 1.60 +/- 0.37 ml/min/g). Nicotine infusion produced a significantly lesser blood flow in outer cortex (OC), inner cortex (IC), and outer medulla (OM) compared to control dogs. The intrarenal-artery infusion of saralasin or phentolamine had no effect on the nicotine-induced MABP changes. Phentolamine infusion prior to nicotine resulted in a significantly greater TRBF (P less than 0.01), OC (p less than 0.001), IC (p less than 0.001) and OM (p less than 0.01) flow than in the group that received nicotine only. Saralasin pretreatment prior to nicotine resulted only in a significantly (p less than 0.01) greater OC flow than nicotine only. Our data suggest that while angiotensin II mediates a portion of the action of nicotine on the OC renal vasculature, the alpha adrenergic system predominates as the mediator of nicotine-induced renal vasoconstriction in the first 7 minutes of nicotine infusion.  相似文献   

19.
《Journal of Physiology》1998,92(3-4):209-213
While trying to mimic the dose and time course of nicotine as it is obtained by a smoker, we found the following results. The initial arrival of even a low concentration of nicotine increased the firing rate of dopaminergic neurons from the ventral tegmental area (VTA) and increased the spontaneous vesicular release of GABA from hippocampal neurons. Longer exposure to nicotine caused variable, but dramatic, desensitization of nicotine receptors and diminished the effects of nicotine. The addictive properties of nicotine as well as its diverse effects on cognitive function could be mediated through differences in activation and desensitization of nicotinic receptors in various areas of the brain.  相似文献   

20.
It is known that nicotine can activate several subtypes of release-regulating presynaptic nicotinic receptors (nAChRs) including those situated on central noradrenergic, dopaminergic, cholinergic and glutamatergic axon terminals. The objective of this study was to investigate the effects of chronic administration of (-)nicotine on the function of the above autoreceptors and heteroreceptors using rat superfused synaptosomes. In hippocampal synaptosomes prelabelled with [3H]noradrenaline (NA) the nicotine-evoked overflow of [3H]NA was higher in rats treated with nicotine for 10 days (via osmotic mini-pumps) than in vehicle-treated rats. In striatal synaptosomes, prelabelled with [3H]dopamine (DA), chronic nicotine did not modify the releasing effect of nicotine. No significant change was observed in experiments with synaptosomes from nucleus accumbens prelabelled with [3H]DA. Exposure of hippocampal synaptosomes prelabelled with [3H]choline to nicotine elicited release of [3H]acetylcholine; this effect was almost abolished in synaptosomes from animals administered nicotine for 10 days, suggesting down-regulation of nicotinic autoreceptors. In hippocampal synaptosomes prelabelled with [3H]D-aspartate, the releasing effect of epibatidine following chronic nicotine treatment did not differ from that in controls. The K+-evoked exocytotic release of the neurotransmitters tested was not modified by long-term nicotine administration. The results show that chronic nicotine differentially affects the function of release-regulating nAChR subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号