首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial respiratory chain complex I undergoes transitions from active to de-activated forms. We have investigated the phenomenon in sub-mitochondrial particles from Neurospora crassa wild-type and a null-mutant lacking the 29.9 kDa nuclear-coded subunit of complex I. Based on enzymatic activities, genetic crosses and analysis of mitochondrial proteins in sucrose gradients, we found that about one-fifth of complex I with catalytic properties similar to the wild-type enzyme is assembled in the mutant. Mutant complex I still displays active/de-active transitions, indicating that other proteins are involved in the phenomenon. However, the kinetic characteristics of complex I active/de-active transitions in nuo29.9 differ from wild-type. The spontaneous de-activation of the mutant enzyme is much slower, implicating the 29.9 kDa polypeptide in this event. We suggest that the fungal 29.9 kDa protein and its homologues in other organisms may modulate the active/de-active transitions of complex I.  相似文献   

2.
Summary TheChlamydomonas flagellar surface exhibits a number of dynamic properties associated with whole cell locomotion and the mating process. In this report, we quantitate the ability of a series of gliding defective mutant cell lines (Lewin 1982) to move polystyrene microspheres along their flagellar surface and describe alterations in the flagellar surfaces of three of these cell lines (fg-2, fg-3 and fg-7). Although all three of these mutant cell strains exhibit less than 16% of the control level of microsphere movement, they differ from each other and the parental cell line (M 475) in the level of flagellar surface adhesiveness as judged by the binding of polystyrene microspheres. SDS-polyacrylamide gel analysis of purified whole flagella from the nongliding mutant cell strains and M 475 demonstrates a correlation between the amount of a surface exposed glycoprotein and the level of flagellar surface adhesiveness. This surface exposed glycoprotein binds the lectin concanavalin A and has an apparent molecular weight of 240 kDa. Strains with low levels of flagellar surface adhesiveness (fg-3 and fg-7) exhibit a low amount of this glycoprotein while the strain with a high level of adhesiveness (fg-2) has an elevated amount of this glycoprotein relative to the parental strain, suggesting that this 240 kDa glycoprotein may be responsible for the adhesive properties of the flagellar surface. Concanavalin A inhibits microsphere binding to the flagellar surface, suggesting that the carbohydrate component of the 240 kDa glycoprotein may be involved in flagellar surface adhesiveness. Biotinylation of surface-exposed flagellar proteins demonstrates differences in the surfaces of these mutant cell lines, especially in terms of the amount of surface labelling of the 240 kDa flagellar glycoprotein. A rabbit polyclonal antibody (designated P-19) that binds to the flagellar surface and recognizes the 240 kDa glycoprotein on Western blots confirms the altered level of this glycoprotein in the mutant cell lines. The results of these experiments suggest that the major flagellar glycoprotein ofC. moewusii may be involved in adhesion of polystyrene microspheres to the flagellar surface and presumably also in the adhesive interaction of the flagellar surface with a solid substrate, which is a necessary prerequisite for the expression of gliding motility.Abbreviations BSA bovine serum albumin - DAB 3,3-diaminobenzidine - HRP horseradish peroxidase - kDa kilodaltons - LBB lectin blot buffer - NHS-LC biotin sulfosuccinimidyl 6-(biotinamido) hexanoate - PBS phosphate buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

3.
A thermosensitive wild-type strain (PP201) of Rhizobium sp. (Cajanus) and its 14 heat-resistant mutants were characterized biochemically with regard to their cell surface (exopolysaccharides (EPSs) and lipopolysaccharides (LPSs)) properties and protein profile. Differences were observed between the parent strain and the mutants in all these parameters under high temperature conditions. At normal temperature (30 °C), only half of the mutant strains produced higher amounts of EPSs than the parent strain, but at 43 °C, all the mutants produced higher quantities of EPS. The LPS electrophoretic pattern of the parent strain PP201 and the heat-resistant mutants was almost identical at 30 °C. At 43 °C, the parent strain did not produce LPS but the mutants produced both kinds of LPSs. The protein electrophoretic pattern showed that the parent strain PP201 formed very few proteins at high temperature, whereas the mutants formed additional new proteins. A heat shock protein (Hsp) of 63–74 kDa was overproduced in all mutant strains.  相似文献   

4.
Zinc concentrations ranging between 0.1 and 1 mm only slightly reduced maximal growth of wild-type Pseudomonas aeruginosa 7NSK2 in iron-limiting casamino acid medium, but had a clear negative effect on the growth of mutant MPFM1 (pyoverdin negative) and especially mutant KMPCH (pyoverdin and pyochelin negative). Production of pyoverdin by wild-type strain 7NSK2 was significantly increased in the presence of 0.5 mm zinc and could not be repressed by iron even at a concentration of 100 m. Siderophore detection via isoelectrofocusing revealed that mutant KMPCH did not produce any siderophores, while mutant MPFM1 overproduced a siderophore with an acidic isoelectric point, most likely pyochelin. Pyochelin production by MPFM1 was stimulated by the presence of zinc in a similar way as pyoverdin for the wild-type. Analysis of outer membrane proteins revealed that three iron regulated outer membrane proteins (IROMPs) (90, 85 and 75 kDa) were induced by iron deficiency in the wild-type, while mutants were found to have altered IROMP profiles. Zinc specifically enhanced the production of a 85 kDa IROMP in 7NSK2, a 75 kDa IROMP in MPFM1 and a 90 kDa IROMP in KMPCH.  相似文献   

5.
Outer membrane protein A (OmpA) is a multifaceted predominant outer membrane protein of Escherichia coli and other Enterobacteriaceae whose role in the pathogenesis of various bacterial infections has recently been recognized. Here, the role of OmpA on the virulence of Shigella flexneri has been investigated. An ompA mutant of wild-type S. flexneri 5a strain M90T was constructed (strain HND92) and it was shown to be severely impaired in cell-to-cell spreading since it failed to plaque on HeLa cell monolayers. The lack of OmpA significantly reduced the levels of IcsA while the levels of cell associated and released IcsP-cleaved 95 kDa amino-terminal portion of the mature protein were similar. Nevertheless, the ompA mutant displayed IcsA exposed across the entire bacterial surface. Surprisingly, the ompA mutant produced proper F-actin comet tails, indicating that the aberrant IcsA exposition at bacterial lateral surface did not affect proper activation of actin-nucleating proteins, suggesting that the absence of OmpA likely unmasks mature or cell associated IcsA at bacterial lateral surface. Moreover, the ompA mutant was able to invade and to multiply within HeLa cell monolayers, although internalized bacteria were found to be entrapped within the host cell cytoplasm. We found that the ompA mutant produced significantly less protrusions than the wild-type strain, indicating that this defect could be responsible of its inability to plaque. Although we could not definitely rule out that the ompA mutation might exert pleiotropic effects on other S. flexneri genes, complementation of the ompA mutation with a recombinant plasmid carrying the S. flexneri ompA gene clearly indicated that a functional OmpA protein is required and sufficient for proper IcsA exposition, plaque and protrusion formation. Moreover, an independent ompA mutant was generated. Since we found that both mutants displayed identical virulence profile, these results further supported the findings presented in this study.  相似文献   

6.
Lactic acid bacteria (LAB) mutants deficient in inter-species co-aggregation with yeast were spontaneously derived from Lactobacillus plantarum ML11-11, a significant mixed-species biofilm former in static co-cultures with budding yeasts. These non-co-aggregative mutants also showed significant decreases in mixed-species biofilm formation. These results suggest the important role of co-aggregation between LAB and yeast in mixed-species biofilm formation. Cell surface proteins obtained by 5 M LiCl extraction from the wild-type cells and non-co-aggregative mutant cells were analyzed by SDS-PAGE. There was an obvious difference in protein profiles. The protein band at 30 kDa was present abundantly in the wild-type cell surface fraction but was significantly decreased in the mutant cells. This band assuredly corresponded to the LAB surface factors that contribute to co-aggregation with yeasts.  相似文献   

7.
In the present study, we have generated a mutant strain of Streptococcus pyogenes, MC25, which lacks M protein on its surface, and we demonstrate that this strain is unable to generate a mature 28 kDa cysteine proteinase. Furthermore, we show that S. pyogenes bacteria of M1 serotype are dependent on cell wall-anchored M protein to cleave the secreted zymogen into a mature cysteine proteinase. We also show that MC25 secretes a 40 kDa zymogen, having a conformation different from that secreted by wild-type bacteria. We provide data showing that the cleavage site is not blocked but, presumably, the active site is. This suggests that M protein, when anchored to the cell wall, is involved in the unfolding of the zymogen and generation of a mature cysteine proteinase that can be activated under reducing conditions. Our data add new aspects to the interaction between two important virulence factors of S. pyogenes, the streptococcal cysteine proteinase and M protein.  相似文献   

8.
Mycoplasma pneumoniae is a pathogenic bacterium colonizing epithelial cells of the human respiratory tract. Using an erythrocyte binding assay we isolated a cytadsorption negative mutant designated M7 which has lost 12 of a total of 13 repetitive sequences of a proline rich C-terminal region of the adhesin related 30-kDa protein. The truncated adhesin related protein of 22 kDa showed reduced antigenicity compared to the corresponding wild-type protein. Moreover, the mutant M7 proved incapable of adhering to erythrocytes and to a human colon carcinoma cell line indicating that the repetitive C-terminal region of the 30-kDa protein is essential for effective cytadherence. The adhesin related 30-kDa protein as well as the truncated forms of the corresponding protein were accessible to carboxypeptidase Y which clearly shows surface exposure of the C-terminus of this protein.  相似文献   

9.
Development of mating competency in Tetrahymena thermophila requires starvation for at least 70 min in low ionic strength buffer. Pair formation between conjugating cells is blocked at early stages by the lectin Concanavalin A (Con A). To investigate the role of Con A-binding proteins in this induced cellular change and pairing, and to confirm and extend an earlier study from our laboratory, a method was developed for preparation of Con A-binding proteins from ciliary membrane-rich fractions of T. thermophila. Con A-binding ciliary proteins were prepared from non-starved and starved cells from two wild type strains and a mating mutant, RH179E1. Comparison of these proteins by SDS-PAGE revealed on overall reduction in number of wild-type bands after starvation. In particular, a major band at 28 kDa was present in non-starved cells and absent in starved cells. However, in the mating mutant, no change in banding profile was seen after starvation: the 28 kDa band was present in both non-starved and starved cells. This, Con A-binding ciliary membrane proteins undergo a major change during starvation-induced development of mating competency in wild-type T. thermophila. In contrast, the mutant differed from wild-type in overall composition of its ciliary Con A-binding glycoproteins and in the response of these proteins to starvation, suggesting that it may be deficient in its ability to be initiated by starvation. Our results are consistent with the hypothesis that a change affecting ciliary membrane Con A-binding proteins is essential for the cellular response to mating signals.  相似文献   

10.
The surface loop which in the Bacillus subtilis neutral protease (NP) extends from amino acid residue 188 to residue 194 was replaced, by site-directed mutagenesis, with the 10-residue segment which in the homologous polypeptide chain of thermolysin (TLN) binds calcium-4 [Matthews, B. W., Weaver, L. H., & Kester, W. R. (1974) J. Biol. Chem. 249, 8030-8044]. The mutant NP was isolated to homogeneity, and its structural, functional, calcium-binding, and stability properties were investigated. Proteolytic fragmentation with Staphylococcus aureus V8 protease of mutant NP was used to isolate and analyze the protein fragment encompassing the site of mutation, unambiguously establishing the effective insertion of the new 10-residue segment. Atomic absorption measurements allowed us to demonstrate that mutant NP binds three calcium ions instead of the two ions bound to wild-type NP, showing that indeed the chain segment grafted from TLN to NP maintains its calcium-binding properties. The mutant NP showed kinetic parameters essentially similar to those of the wild-type NP with Z-Phe-Leu-Ala-OH as substrate. The enzyme inactivation of mutant vs wild-type NP was studied as a function of free [Ca2+]. It was found that mutant NP was much less stable than the wild-type NP when enzyme solutions were dialyzed at neutral pH in the presence of [Ca2+] below 10(-3) M. On the other hand, the kinetic thermal stability to irreversible inactivation of mutant NP, when measured in the presence of 0.1 M CaCl2, was found to be increased about 2-fold over that of the wild-type NP. Thus, modulation of enzyme stability by free [Ca2+] in mutant NP correlates with similar findings previously reported for thermolysin. Overall, the results obtained indicate that protein engineering experiments can be used to prepare hybrid proteins on the basis of sequence and function analysis of homologous protein molecules and show the feasibility of engineering metal ion binding sites into proteins.  相似文献   

11.
Methanococcus voltae is a flagellated member of the Archaea. Four highly similar flagellin genes have previously been cloned and sequenced, and the presence of leader peptides has been demonstrated. While the flagellins of M. voltae are predicted from their gene sequences to be approximately 22 to 25 kDa, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified flagella revealed flagellin subunits with apparent molecular masses of 31 and 33 kDa. Here we describe the expression of a M. voltae flagellin in the bacteria Escherichia coli and Pseudomonas aeruginosa. Both of these systems successfully generated a specific expression product with an apparently uncleaved leader peptide migrating at approximately 26.5 kDa. This source of preflagellin was used to detect the presence of preflagellin peptidase activity in the membranes of M. voltae. In addition to the native flagellin, a hybrid flagellin gene containing the sequence encoding the M. voltae FlaB2 mature protein fused to the P. aeruginosa pilin (PilA) leader peptide was constructed and transformed into both wild-type P. aeruginosa and a prepilin peptidase (pilD) mutant of P. aeruginosa. Based on migration in SDS-PAGE, the leader peptide appeared to be cleaved in the wild-type cells. However, the archaeal flagellin could not be detected by immunoblotting when expressed in the pilD mutant, indicating a role of the peptidase in the ultimate stability of the fusion product. When the +5 position of the mature flagellin portion of the pilin-flagellin fusion was changed from glycine to glutamic acid (as in the P. aeruginosa pilin) and expressed in both wild-type and pilD mutant P. aeruginosa, the product detected by immunoblotting migrated slightly more slowly in the pilD mutant, indicating that the fusion was likely processed by the prepilin peptidase present in the wild type. Potential assembly of the cleaved fusion product by the type IV pilin assembly system in a P. aeruginosa PilA-deficient strain was tested, but no filaments were noted on the cell surface by electron microscopy.  相似文献   

12.
The proposed FAD binding site of L-lysine N6-hydroxylase (EC 1.14.13.99) exhibits an unusual proline in a position where a highly conserved glycine is found in other FAD dependent hydroxylases. We have studied the role of this proline by mutating it to glycine in [P14G]aerA, which was expressed in Escherichia coli M15-2 and purified to homogeneity. The mutation has marked effects on the affinities of the cofactors FAD and NADPH as well as the substrate, lysine. Compared to the wild-type enzyme, the activity vs. pH profile of the mutant protein indicates a shift of the apparent pK'(a)s (7.8 and 8.7 for wild-type and 6.8 and 7.7 for the P14G-mutant enzyme) and of the activity maximum (pH 8 for wild-type and pH 7 for the P14G-mutant enzyme). While the activity of the mutant enzyme is much lower under conditions found to be optimal for the wild-type enzyme, adjustment of substrate and cofactor concentrations and pH leads to comparable activities for the mutant enzyme. These results suggest that the proline fulfils an important structural role in the proposed FAD binding site.  相似文献   

13.
Mycoplasma pneumoniae adsorbs to host respiratory epithelium primarily by its attachment organelle, the proper function of which depends upon mycoplasma adhesin and cytoskeletal proteins. Among the latter are the cytadherence-associated proteins HMW1 and HMW2, whose specific roles in this process are unknown. In the M. pneumoniae cytadherence mutant I-2, loss of HMW2 results in accelerated turnover of HMW1 and other cytadherence-accessory proteins, probably by proteolysis. However, both the mechanism of degradation and the means by which these proteins are rendered susceptible to it are not understood. In this study, we addressed whether HMW1 degradation is a function of its presence among specific subcellular fractions and established that HMW1 is a peripheral membrane protein that is antibody accessible on the outer surfaces of both wild-type and mutant I-2 M. pneumoniae but to a considerably lesser extent in the mutant. Quantitation of HMW1 in Triton X-100-fractionated extracts from cells pulse-labeled with [(35)S]methionine indicated that HMW1 is synthesized in a Triton X-100-soluble form that exists in equilibrium with an insoluble (cytoskeletal) form. Pulse-chase analysis demonstrated that over time, HMW1 becomes stabilized in the cytoskeletal fraction and associated with the cell surface in wild-type M. pneumoniae. The less efficient transition to the cytoskeleton and mycoplasma cell surface in mutant I-2 leads to accelerated degradation of HMW1. These data suggest a role for HMW2 in promoting export of HMW1 to the cell surface, where it is stable and fully functional.  相似文献   

14.
D G Long  R M Weis 《Biochemistry》1992,31(41):9904-9911
We have observed that a 31-kDa cloned fragment from the Escherichia coli aspartate receptor exhibits a reversible monomer-oligomer reaction. The fragment, derived from the cytoplasmic region of the receptor (c-fragment), contains the signaling functions of the receptor. The wild-type and nine missense mutant fragments were analyzed. The latter were selected by the effect of the mutations on the signaling properties of the intact receptor, which induced either persistent smooth swimming or tumbling in bacteria [Mutoh, N., Oosawa, K., & Simon, M. I. (1986) J. Bacteriol. 167, 992-998]. In pH 7.0 buffer, the mutations caused five out of the six smooth mutant c-fragments to form oligomers, while neither the three tumble mutant nor wild-type fragments exhibited significant oligomer formation. At a lower pH (5.5), all of the fragments displayed some tendency to form oligomers. The equilibria between the monomer and the oligomers were monitored by gel permeation chromatography (GPC) which resolved two to three forms with apparent molecular weights between 110,000 and 270,000. The proportions of the different forms depended on concentration, indicating an association-dissociation reaction. Static light scattering (SLS) was used to demonstrate that the solution molecular mass of the wild-type c-fragment was 31 kDa and not 110 kDa as indicated by chromatography. One oligomer-forming c-fragment (S461L) eluted as the monomer and one other form, which was determined to be a dimer by SLS. The weight-average molecular weights, calculated from GPC data as a function of protein concentration, agreed well with the weight-average molecular weights obtained by SLS for this mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Staphylococcus epidermidis is a frequent cause of nosocomial infections. The central virulence factor of S. epidermidis is biofilm formation. Polysaccharide intercellular adhesin (PIA) constitutes the major biofilm matrix-component. PIA and biofilm have been implicated in S. epidermidis evasion of host immune defence. We examined the effects of S. epidermidis PIA on the inflammatory response with focus on complement activation. We used a human whole-blood ex vivo model of infection and compared the effects of a PIA-positive S. epidermidis strain (SE1457) and its PIA-negative isogenic mutant (M10). The independent effect of purified PIA on complement activation was investigated. In glucose-rich media, the mutant formed a proteinacious DNA-rich biofilm, whereas SE1457 formed a thick PIA-biofilm. In biofilm growth, SE1457 induced a stronger activation of the complement system compared with M10. We verified that purified PIA was independently responsible for a strong activation of the complement system. In contrast, M10 induced higher granulocyte activation by expression of CD11b and higher secretion of cytokines. We conclude that PIA has potent pro-inflammatory properties by activating the complement system. However, in a complex balance of the immune response, the decreased activation of granulocytes and cytokines by a PIA biofilm may limit host eradication of S. epidermidis.  相似文献   

16.
Creatinase (creatine amidinohydrolase, EC 3.5.3.3) from Pseudomonas putida is a homodimer of 45 kDa subunit molecular mass, the three-dimensional structure of which is known at 1.9 A resolution. Three point mutants, A109V, V355M, and V182I, as well as one double mutant combining A109V and V355M, and the triple mutant with all three replacements, were compared with wild-type creatinase regarding their physical and enzymological properties. High-resolution crystal data for wild-type creatinase and the first two mutants suggest isomorphism at least for these three proteins (R. Huber, pers. comm.). Physicochemical measurements confirm this prediction, showing that the mutations have no effect either on the quaternary structure and gross conformation or the catalytic properties as compared to wild-type creatinase. The replacement of V182 (at the solvent-exposed end of the first helix of the C-terminal domain) does not cause significant differences in comparison with the wild-type enzyme. The other point mutations stabilize the first step in the biphasic denaturation transition without affecting the second one. In sum, the enhanced stability seems to reflect slight improvements in the local packing without creating new well-defined bonds. The increase in hydrophobicity generated by the introduction of additional methyl groups (A109V, V182I) must be compensated by minor readjustments of the global structure. Secondary or quaternary interactions are not affected. In going from single to double and triple mutants, to a first approximation, the increments of stabilization are additive.  相似文献   

17.
The C40,82A;I87E mutant of barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens, was obtained, and its physicochemical properties were studied. It was produced as a fusion protein with thioredoxin and then cleaved from this by EKmax enterokinase. The mutant was shown by NMR to retain the spatial structure of the wild-type protein but, in contrast to barstar, does not form the homodimers characteristic of barstar in aqueous solution. The mutant protein binds barnase with the dissociation constant (6.6 ± 1.1) × 10–11 M and exhibits other physicochemical properties similar to those of the wild-type barstar. This allows the use of C40,82A;I87E mutant instead of wild-type barstar in the investigations where the protein dimerization is undesirable.  相似文献   

18.
Glutamate dehydrogenase from Clostridium symbiosum has two cysteine residues, C144 and C320. The single mutant C320S and a double mutant with both cysteines replaced by serine have been compared with one another in terms of long-term stability and other properties. Specific activities and kinetic parameters were relatively little affected, but stability was improved—e.g. at 25 °C sterile, sealed samples of wild-type enzyme, C320S and the double mutant at 0.1 mg/ml in 0.1 M phosphate buffer, pH 7 lost 50%, 42% and 32% of activity over 60 days. For the first two proteins this loss was partly reversible with dithiothreitol. When wild-type enzyme was deliberately contaminated with 1 μM Cu2+ it became less stable and formed aggregates, whereas the double mutant was not affected. The double mutation thus removes a source of instability through –SH oxidation that would be accentuated by any heavy metal contamination of solutions.  相似文献   

19.
The C40,82A;I87E mutant of barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens, was obtained, and its physicochemical properties were studied. It was produced as a fusion protein with thioredoxin and then cleaved from this by EKmax enterokinase. The mutant was shown by NMR to retain the spatial structure of the wild-type protein but, in contrast to barstar, does not form the homodimers characteristic of barstar in aqueous solution. The mutant protein binds barnase with the dissociation constant (6.6 +/- 1.1) x 10(-11) M and exhibits other physicochemical properties similar to those of the wild-type barstar. This allows the use of C40,82A;I87E mutant instead of wild-type barstar in investigations where the protein dimerization is undesirable. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 6; see also http://www.maik.ru.  相似文献   

20.
Extracellular lipase production by Yarrowia lipolytica was increased by mutant selection from 28 U/ml to 1000 U/ml. This activity was also reached in a 500 l bioreactor. The properties of the mutant lipase were the same of those of the wild type: M 38 kDa, optimum pH 7 and optimum temperature 37¡C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号