首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theories of protein folding often consider contributions from three fundamental elements: loops, hydrophobic interactions, and secondary structures. The pathway of protein folding, the rate of folding, and the final folded structure should be predictable if the energetic contributions to folding of these fundamental factors were properly understood. alphatalpha is a helix-turn-helix peptide that was developed by de novo design to provide a model system for the study of these important elements of protein folding. Hydrogen exchange experiments were performed on selectively 15N-labeled alphatalpha and used to calculate the stability of hydrogen bonds within the peptide. The resulting pattern of hydrogen bond stability was analyzed using a version of Lifson-Roig model that was extended to include a statistical parameter for tertiary interactions. This parameter, x, represents the additional statistical weight conferred upon a helical state by a tertiary contact. The hydrogen exchange data is most closely fit by the XHC model with an x parameter of 9.25. Thus the statistical weight of a hydrophobic tertiary contact is approximately 5.8x the statistical weight for helix formation by alanine. The value for the x parameter derived from this study should provide a basis for the understanding of the relationship between hydrophobic cluster formation and secondary structure formation during the early stages of protein folding.  相似文献   

2.
Phi values are experimental measures of the effects of mutations on the folding kinetics of a protein. A central question is what structural information Phi values give about the transition-state of folding. Traditionally, a Phi value is interpreted as representing the "nativeness" of a mutated residue in the transition-state. However, this interpretation is often problematic. We present here a better structural interpretation of Phi values for mutations within a given helix. Our interpretation is based on a simple physical model that distinguishes between secondary and tertiary free energy contributions of helical residues. From a linear fit of the model to experimental data, we obtain two structural parameters: the extent of helix formation in the transition-state, and the nativeness of tertiary interactions in the transition-state. We apply the model to all proteins with well-characterized helices for which more than 10 Phi values are available: protein A, CI2, and protein L. The model is simple to apply to experimental data, captures nonclassical Phi values <0 or >1 in these helices, and explains how different mutations at a given site can lead to different Phi values.  相似文献   

3.
Fuxreiter M  Simon I 《Proteins》2002,48(2):320-326
Stabilization centers (SCs) were shown to play an important role in preventing decay of three-dimensional protein structures. These residue clusters, stabilized by cooperative long-range interactions, were proposed to serve as anchoring points for arranging secondary structure elements. In all-alpha proteins, SC elements appear less frequently than in all-beta, alpha/beta, and alpha+beta proteins suggesting that tertiary structure formation of all-alpha proteins is governed by different principles than in other protein classes. Here we analyzed the relation between the formation of stabilization centers and the inter-axial angles (Omega) of alpha-helices in 4 helix bundle proteins. In the distance range, where dipoles have dominant effect on the helix pair arrangement, those helix pairs, where residues from both helices participate in SC elements, appear as parallel more frequently than those helices where no SC elements are present. For SC containing helix pairs, the energetic difference between the parallel and anti-parallel states decreases considerably from 1.1 kcal/mol to 0.4 kcal/mol. Although the observed effect is weak for more distant helices, a competition between the SC element formation and the optimal dipole-dipole interaction of alpha-helices is proposed as a mechanism for tertiary structure formation in 4 helix bundle proteins. The SC-forming potential of different arrangements as well as the pitfalls of the SC definition are also discussed.  相似文献   

4.
Alpha t alpha is a de novo designed 38-residue peptide [Fezoui et al. (1995) Protein Sci. 4, 286-295] that adopts a helical hairpin conformation in solution [Fezoui et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 3675-3679; Fezoui et al. (1997) Protein Sci. 6, 1869-1877]. Since alpha t alpha was developed as a model system for protein folding at the stage where secondary structures interact and become mutually stabilizing, it is of interest to investigate the increase in stability that occurs with helix association. alpha t alpha was dissected into its component helices and the relative stabilities of the individual helices and the parent molecule were assessed. The Delta G0 of unfolding of alpha t alpha measured by guanidine hydrochloride denaturation was determined to be 3.4 kcal/mol. The equilibrium constant for folding of alpha t alpha was estimated from the Delta G0 as 338 and from hydrogen exchange measurements as 259. The stability of the helices in intact alpha t alpha over the individual helices increased by a factor of at least 37 based on amide proton exchange measurements. Sedimentation equilibrium studies showed very little association of the peptides to form either homo- or heterodimers, suggesting that helix association is stabilized by the high effective concentration of the helices caused by the presence of the connecting turn. The effects of salt and pH on the helicity of the component peptides are largely reflected in the intact molecule, implying that short-range interactions still make important contributions to the conformation of the intact molecule even though significant stabilization is caused by helix association.  相似文献   

5.
A thermodynamic model describing formation of α-helices by peptides and proteins in the absence of specific tertiary interactions has been developed. The model combines free energy terms defining α-helix stability in aqueous solution and terms describing immersion of every helix or fragment of coil into a micelle or a nonpolar droplet created by the rest of protein to calculate averaged or lowest energy partitioning of the peptide chain into helical and coil fragments. The α-helix energy in water was calculated with parameters derived from peptide substitution and protein engineering data and using estimates of nonpolar contact areas between side chains. The energy of nonspecific hydrophobic interactions was estimated considering each α-helix or fragment of coil as freely floating in the spherical micelle or droplet, and using water/cyclohexane (for micelles) or adjustable (for proteins) side-chain transfer energies. The model was verified for 96 and 36 peptides studied by 1H-nmr spectroscopy in aqueous solution and in the presence of micelles, respectively ([set I] and [set 2]) and for 30 mostly α-helical globular proteins ([set 3]). For peptides, the experimental helix locations were identified from the published medium-range nuclear Overhauser effects detected by 1H-nmr spectroscopy. For sets 1, 2, and 3, respectively, 93, 100, and 97% of helices were identified with average errors in calculation of helix boundaries of 1.3, 2.0, and 4.1 residues per helix and an average percentage of correctly calculated helix—coil states of 93, 89, and 81%, respectively. Analysis of adjustable parameters of the model (the entropy and enthalpy of the helix—coil transition, the transfer energy of the helix backbone, and parameters of the bound coil), determined by minimization of the average helix boundary deviation for each set of peptides or proteins, demonstrates that, unlike micelles, the interior of the effective protein droplet has solubility characteristics different from that for cyclohexane, does not bind fragments of coil, and lacks interfacial area. © 1997 John Wiley & Sons, Inc. Biopoly 42: 239–269, 1997  相似文献   

6.
Capping interactions associated with specific sequences at or near the ends of alpha-helices are important determinants of the stability of protein secondary and tertiary structure. We investigate here the role of the helix-capping motif Ser-X-X-Glu, a sequence that occurs frequently at the N termini of alpha helices in proteins, on the conformation and stability of the GCN4 leucine zipper. The 1.8 A resolution crystal structure of the capped molecule reveals distinct conformations, packing geometries and hydrogen-bonding networks at the amino terminus of the two helices in the leucine zipper dimer. The free energy of helix stabilization associated with the hydrogen-bonding and hydrophobic interactions in this capping structure is -1.2 kcal/mol, evaluated from thermal unfolding experiments. A single cap thus contributes appreciably to stabilizing the terminated helix and thereby the native state. These results suggest that helix capping plays a further role in protein folding, providing a sensitive connector linking alpha-helix formation to the developing tertiary structure of a protein.  相似文献   

7.
Scott KA  Alonso DO  Pan Y  Daggett V 《Biochemistry》2006,45(13):4153-4163
Molecular dynamics simulations can be used to reveal the detailed conformational behaviors of peptides and proteins. By comparing fragment and full-length protein simulations, we can investigate the role of each peptide segment in the folding process. Here, we take advantage of information regarding the helix formation process from our previous simulations of barnase and protein A as well as new simulations of four helical fragments from these proteins at three different temperatures, starting with both helical and extended structures. Segments with high helical propensity began the folding process by tethering the chain through side chain interactions involving either polar interactions, such as salt bridges, or hydrophobic staples. These tethers were frequently nonnative (i.e., not i --> i + 4 spacing) and provided a scaffold for other residues, thereby limiting the conformational search. The helical structure then propagated on both sides of the tether. Segments with low stability and propensity formed later in the folding process and utilized contacts with other portions of the protein when folding. These helices formed via a tertiary contact-assisted mechanism, primarily via hydrophobic contacts between residues distant in sequence. Thus, segments with different helical propensities appear to play different roles during protein folding. Furthermore, the active role of nonlocal side chains in helix formation highlights why we must move beyond simple hierarchical models of protein folding.  相似文献   

8.
The final, structure-determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo-oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins-all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water-soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen-bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix-helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices.  相似文献   

9.
Recently, Presta and Rose proposed that a necessary condition for helix formation is the presence of residues at the N- and C-termini (called NTBs and CTBs) whose side chains can form hydrogen bonds with the initial four amides and the last four carbonyls of the helix, which otherwise lack intrahelical hydrogen bonding partners. We have tested this hypothesis by conformational analysis by circular dichroism (CD) of a synthetic peptide corresponding to a region (171-188) of the protein carboxypeptidase A; in the protein, residues 174 to 186 are helical and are flanked by NTBs and CTBs. Since helix formation in this peptide may also be stabilized by electrostatic interactions, we have compared the helical content of the native peptide with that of several modified peptides designed to enable dissection of different contributions to helix stability. As expected, helix dipole interactions appear to contribute substantially, but we conclude that hydrogen bonding interactions as proposed by Presta and Rose also stabilize helix formation. To assist in comparison of different peptides, we have introduced two concentration-independent CD parameters which are sensitive probes of helix formation.  相似文献   

10.
Nanosecond molecular dynamics simulations in a fully solvated phospholipid bilayer have been performed on single transmembrane alpha-helices from three putative ion channel proteins encoded by viruses: NB (from influenza B), CM2 (from influenza C), and Vpu (from HIV-1). alpha-Helix stability is maintained within a core region of ca. 28 residues for each protein. Helix perturbations are due either to unfavorable interactions of hydrophobic residues with the lipid headgroups or to the need of the termini of short helices to extend into the surrounding interfacial environment in order to form H-bonds. The requirement of both ends of a helix to form favorable interactions with lipid headgroups and/or water may also lead to tilting and/or kinking of a transmembrane alpha-helix. Residues that are generally viewed as poor helix formers in aqueous solution (e.g., Gly, Ile, Val) do not destabilize helices, if located within a helix that spans a lipid bilayer. However, helix/bilayer mismatch such that a helix ends abruptly within the bilayer core destabilizes the end of the helix, especially in the presence of Gly and Ala residues. Hydrogen bonding of polar side-chains with the peptide backbone and with one another occurs when such residues are present within the bilayer core, thus minimizing the energetic cost of burying such side-chains.  相似文献   

11.
The rational design of peptide and protein helices is not only of practical importance for protein engineering but also is a useful approach in attempts to improve our understanding of protein folding. Recent modifications of theoretical models of helix‐coil transitions allow accurate predictions of the helix stability of monomeric peptides in water and provide new possibilities for protein design. We report here a new method for the design of α‐helices in peptides and proteins using AGADIR, the statistical mechanical theory for helix‐coil transitions in monomeric peptides and the tunneling algorithm of global optimization of multidimensional functions for optimization of amino acid sequences. CD measurements of helical content of peptides with optimized sequences indicate that the helical potential of protein amino acids is high enough to allow formation of stable α‐helices in peptides as short as of 10 residues in length. The results show the maximum achievable helix content (HC) of short peptides with fully optimized sequences at 5 °C is expected to be ~70–75%. Under certain conditions the method can be a powerful practical tool for protein engineering. Unlike traditional approaches that are often used to increase protein stability by adding a few favorable interactions to the protein structure, this method deals with all possible sequences of protein helices and selects the best one from them. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
In order to obtain insight into the structural flexibility of chloroplast targeting sequences, the Silene pratensis preferredoxin transit peptide was studied by circular dichroism and nuclear magnetic resonance spectroscopy. In water, the peptide is unstructured, with a minor propensity towards helix formation from Val-9 to Ser-12 and from Gly-30 to Ser-40. In 50% (v/v) trifluoroethanol, structurally independent N- and C-terminal helices are stabilized. The N-terminal helix appears to be amphipathic, with hydrophobic and hydroxylated amino acids on opposite sides. The C-terminal helix comprises amino acids Met-29-Gly-50 and is destabilized at Gly-39. No ordered tertiary structure was observed. The results are discussed in terms of protein import into chloroplasts, in which the possible interactions between the transit peptide and lipids are emphasized.  相似文献   

13.
Kim S  Cross TA 《Biophysical journal》2002,83(4):2084-2095
Protein environments substantially influence the balance of molecular interactions that generate structural stability. Transmembrane helices exist in the relatively uniform low dielectric interstices of the lipid bilayer, largely devoid of water and with a very hydrophobic distribution of amino acid residues. Here, through an analysis of bacteriorhodopsin crystal structures and the transmembrane helix structure from M2 protein of influenza A, some helices are shown to be exceptionally uniform in hydrogen bond geometry, peptide plane tilt angle, and backbone torsion angles. Evidence from both the x-ray crystal structures and solid-state NMR structure suggests that the intramolecular backbone hydrogen bonds are shorter than their counterparts in water-soluble proteins. Moreover, the geometry is consistent with a dominance of electrostatic versus covalent contributions to these bonds. A comparison of structure as a function of resolution shows that as the structures become better characterized the helices become much more uniform, suggesting that there is a possibility that many more uniform helices will be observed, even among the moderate resolution membrane protein structures that are currently in the Protein Data Bank that do not show such features.  相似文献   

14.
Anderson MW  Gorski J 《Biochemistry》2005,44(15):5617-5624
To generate an effective immune response, class II major histocompatibility complex molecules (MHCII) must present a diverse array of peptide ligands for recognition by T lymphocytes. Peptide/MHCII complexes are stabilized by hydrophobic anchoring of peptide side chains to pockets in the MHCII protein and the formation of hydrogen bonds to the peptide backbone. Many current models of peptide/MHCII association assume an additive and independent contribution of the interactions between major MHCII pockets and corresponding side chains in the peptide. However, significant conformational rearrangements occur in both the peptide and MHCII during binding. Therefore, we hypothesize that peptide binding to MHCII could be viewed as a folding process in which both molecules cooperate to produce the final conformation. To directly test this hypothesis, we adapt a serial mutagenesis strategy to study cooperativity in the interaction of the human MHCII HLA-DR1 and a peptide derived from influenza hemagglutinin. Substitutions in either the peptide or HLA-DR1 that are predicted to interfere with hydrogen bond formation show cooperative effects on complex stability and affinity. Substitution of a peptide side chain that provides a hydrophobic contact also contributes to the cooperative effect, suggesting a role for all energetic sources in the folding process. We propose that cooperativity throughout the peptide-binding groove reflects the folding of segments of the MHCII molecule into helices around the peptide with a concomitant folding of the peptide into a polyproline helix. The implications of cooperativity for peptide/MHCII structure and epitope selection are discussed.  相似文献   

15.
N2 is the second position in the alpha-helix. All 20 amino acids were placed in the N2 position of a synthetic helical peptide (CH(3)CO-[AXAAAAKAAAAKAAGY]-NH(2)) and the helix content was measured by circular dichroism spectroscopy at 273K. The dependence of peptide helicity on N2 residue identity has been used to determine a free-energy scale by analysis with a modified Lifson-Roig helix-coil theory that includes a parameter for the N2 energy (n2). The rank order of DeltaDeltaG((relative to Ala)) is Glu(-), Asp(-) > Ala > Glu(0), Leu, Val, Gln, Thr, Ile, Ser, Met, Asp(0), His(0), Arg, Cys, Lys, Phe > Asn, > Gly, His(+), Pro, Tyr. The results correlate very well with N2 propensities in proteins, moderately well with N1 and helix interior preferences, and not at all with N-cap preferences. The strongest energetic effects result from interactions with the helix dipole, which favors negative charges at the helix N terminus. Hydrogen bonds to side chains at N2, such as Gln, Ser, and Thr, are weak, despite occurring frequently in protein crystal structures, in contrast to the N-cap position. This is because N-cap hydrogen bonds are close to linear, whereas N2 hydrogen bonds have poor geometry. These results can be used to modify protein stability rationally, help design helices, and improve prediction of helix location and stability.  相似文献   

16.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

17.
Sequence-specific noncovalent helix-helix interactions between transmembrane (TM) segments in proteins are investigated by incorporating selected TM sequences into synthetic peptides using the construct CKKK-TM-KKK. The peptides are of suitable hydrophobicity for spontaneous membrane insertion, whereas formation of an N-terminal S-S bond can bring pairs of TM helices into proximity and promote their parallel orientation. Using the propensity of the protein to undergo thermally induced alpha-helix --> beta-sheet transitions as a parameter for helix stability, we compared the wild type and mutant (V29A and V31A) bacteriophage M13 coat proteins with their corresponding TM peptide constructs (M13 residues 24-42). Our results demonstrated that the relevant helix-helix tertiary contacts found in the intact proteins persist in the peptide mimics. Molecular dynamics simulations support the tight "two in-two out" dimerization motif for V31A consistent with mutagenesis data. The overall results reinforce the notion of TM segments as autonomous folding domains and suggest that the generic peptide construct provides a viable reductionist system for membrane protein structural and computational analysis.  相似文献   

18.
Liu W  Crocker E  Zhang W  Elliott JI  Luy B  Li H  Aimoto S  Smith SO 《Biochemistry》2005,44(9):3591-3597
Amyloid fibrils associated with diseases such as Alzheimer's are often derived from the transmembrane helices of membrane proteins. It is known that the fibrils have a cross-beta-sheet structure where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. However, the structural basis for how the membrane-spanning helix is converted into a beta-sheet or how protofibrils associate into fibrils is not known. Here, we use a model peptide corresponding to a portion of the single transmembrane helix of glycophorin A to investigate the structural role of glycine in amyloid-like fibrils formed from transmembrane helices. Glycophorin A contains a GxxxG motif that is found in many transmembrane sequences including that of the amyloid precursor protein and prion protein. We propose that glycine, which mediates helix interactions in membrane proteins, also provides key packing motifs when it occurs in beta-sheets. We show that glycines in the glycophorin A transmembrane helix promote extended beta-strand formation when the helix partitions into aqueous environments and stabilize the packing of beta-sheets in the formation of amyloid-like fibrils. We demonstrate that fibrillization can be disrupted with a new class of inhibitors that target the molecular grooves created by glycine.  相似文献   

19.
The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  相似文献   

20.
An ultimate goal of synthetic ion-channel peptide design is to construct stable and functional ion-conducting pores. It is expected that specific interhelical interactions would facilitate the association of helices in phospholipid membranes and the successive helix-bundle formation. In the present study, we rationally designed helix-bundle ion channels using the synthetic hybrid peptide K20E20, a disulfide dimer of cationic- and anionic-amphiphilic helices Ac-CGG-(BKBA) 5-NH 2 and Ac-CGG-(BEBA) 5-NH 2. Circular dichroism (CD) measurements in aqueous media implied helix stabilization in the peptide caused by the interhelical electrostatic interactions. In addition, CD spectra recorded in the presence of DPPC liposomes and dye-leakage measurements suggested a high degree of association of peptide monomers in phospholipid membranes as well as high affinities between peptide and lipid bilayers. These features allowed ion-channel formation at extremely low peptide concentrations (as low as 1 nM). According to electrophysiological analyses, stable helix bundles were constructed of six peptide helices by association of three K20E20 molecules. Helix-helix association in lipid membranes, peptide-membrane interactions, and ion-channel formation of K20E20 peptides were all facilitated by intramolecular electrostatic interactions between the helices of the hybrid peptide and were pH-dependent. Conductance through K20E20 ion channels decreased under acidic conditions because of the interruption of the salt bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号