首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoglyceride-linked enterobacterial common antigen (ECA(PG)) is a cell surface glycolipid that is synthesized by all gram-negative enteric bacteria. The carbohydrate portion of ECA(PG) consists of linear heteropolysaccharide chains comprised of the trisaccharide repeat unit Fuc4NAc-ManNAcA-GlcNAc, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. The potential reducing terminal GlcNAc residue of each polysaccharide chain is linked via phosphodiester linkage to a phosphoglyceride aglycone. We demonstrate here the occurrence of a water-soluble cyclic form of enterobacterial common antigen, ECA(CYC), purified from Escherichia coli strains B and K-12 with solution nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and additional biochemical methods. The ECA(CYC) molecules lacked an aglycone and contained four trisaccharide repeat units that were nonstoichiometrically substituted with up to four O-acetyl groups. ECA(CYC) was not detected in mutant strains that possessed null mutations in the wecA, wecF, and wecG genes of the wec gene cluster. These observations corroborate the structural data obtained by NMR and ESI-MS analyses and show for the first time that the trisaccharide repeat units of ECA(CYC) and ECA(PG) are assembled by a common biosynthetic pathway.  相似文献   

2.
We describe here the purification and quantification of a water-soluble cyclic form of enterobacterial common antigen (ECA(CYC)) from Escherichia coli K-12 as well as information regarding its subcellular location and the genetic loci involved in its assembly. Structural characterization of purified ECA(CYC) molecules obtained from E. coli K-12 revealed that they uniformly contained four trisaccharide repeat units, and they were substituted with from zero to four O-acetyl groups. Cells from overnight cultures contained approximately 2 microg ECA(CYC) per milligram (dry weight), and cell fractionation studies revealed that these molecules were localized exclusively in the periplasm. The synthesis and assembly of ECA(CYC) were found to require the wzxE and wzyE genes of the wec gene cluster. These genes encode proteins involved in the transmembrane translocation of undecaprenylpyrophosphate-linked ECA trisaccharide repeat units and the polymerization of trisaccharide repeat units, respectively. Surprisingly, synthesis of ECA(CYC) was dependent on the wzzE gene, which is required for the modulation of the polysaccharide chain lengths of phosphoglyceride-linked ECA (ECA(PG)). The presence of ECA(CYC) in extracts of several other gram-negative enteric organisms was also demonstrated; however, it was not detected in cell extracts of Pseudomonas aeruginosa. These data suggest that in addition to ECA(PG), ECA(CYC) may be synthesized in many, if not all, members of the Enterobacteriaceae.  相似文献   

3.
The carbohydrate component of the enterobacterial common antigen (ECA) of Escherichia coli K-12 occurs primarily as a water-soluble cyclic polysaccharide located in the periplasm (ECA(CYC)) and as a phosphoglyceride-linked linear polysaccharide located on the cell surface (ECA(PG)). The polysaccharides of both forms are comprised of the amino sugars N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-mannosaminuronic acid (ManNAcA), and 4-acetamido-4,6-dideoxy-D-galactose (Fuc4NAc). These amino sugars are linked to one another to form trisaccharide repeat units with the structure -->3-alpha-D-Fuc4NAc-(1-->4)-beta-D-ManNAcA-(1-->4)-alpha-D-GlcNAc-(1-->. The hydroxyl group in the 6 position of the GlcNAc residues of both ECA(CYC) and ECA(PG) are nonstoichiometrically esterified with acetyl groups. Random transposon insertion mutagenesis of E. coli K-12 resulted in the generation of a mutant defective in the incorporation of O-acetyl groups into both ECA(CYC) and ECA(PG). This defect was found to be due to an insertion of the transposon into the yiaH locus, a putative gene of unknown function located at 80.26 min on the E. coli chromosomal map. Bioinformatic analyses of the predicted yiaH gene product indicate that it is an integral inner membrane protein that is a member of an acyltransferase family of enzymes found in a wide variety of organisms. The results of biochemical and genetic experiments presented here strongly support the conclusion that yiaH encodes the O-acetyltransferase responsible for the incorporation of O-acetyl groups into both ECA(CYC) and ECA(PG). Accordingly, we propose that this gene be designated wecH.  相似文献   

4.
Expressed protein ligation (EPL) is an intein-based approach that has been used for protein engineering and biophysical studies of protein structures. One major problem of the EPL is the low yield of final ligation product, primarily due to the complex procedure of the EPL, preventing EPL from gaining popularity in the research community. Here we report an efficient on-column EPL strategy, which focuses on enhancing the expression level of the intein-fusion protein that generates thioester for the EPL. We applied this EPL strategy to human apolipoprotein E (apoE) and routinely obtained 25-30 mg segmental, triple-labeled apoE from 1-L cell culture. The approaches reported here are general approaches that are not specific for apoE, thus providing a general strategy for a highly efficient EPL. In addition, we also report an isotopic labeling scheme that double-labels one domain and keeps the other domain of apoE deuterated. Such an isotopic labeling scheme can only be achieved using the EPL strategy. Our data indicated that the segmental triple-labeled apoEs using this labeling scheme produced high-quality, simplified NMR spectra, facilitating NMR spectral assignment. For large proteins, such as apoE, perdeuterated protein samples have to be used to reduce the linewidth of NMR signals, causing a major problem for the NOE-based NMR method, since perdeuterated proteins lack protons for NOE measurement. The new labeling strategy solves this problem and provides (13)C/(15)N double-labeled, protonated protein domains, allowing for determination of high-resolution NMR structure of these large proteins.  相似文献   

5.
Evolution of regulatory interactions controlling floral asymmetry   总被引:1,自引:0,他引:1  
A key challenge in evolutionary biology is to understand how new morphologies can arise through changes in gene regulatory networks. For example, floral asymmetry is thought to have evolved many times independently from a radially symmetrical ancestral condition, yet the molecular changes underlying this innovation are unknown. Here, we address this problem by investigating the action of a key regulator of floral asymmetry, CYCLOIDEA (CYC), in species with asymmetric and symmetric flowers. We show that CYC encodes a DNA-binding protein that recognises sites in a downstream target gene RADIALIS (RAD) in Antirrhinum. The interaction between CYC and RAD can be reconstituted in Arabidopsis, which has radially symmetrical flowers. Overexpression of CYC in Arabidopsis modifies petal and leaf development, through changes in cell proliferation and expansion at various stages of development. This indicates that developmental target processes are influenced by CYC in Arabidopsis, similar to the situation in Antirrhinum. However, endogenous RAD-like genes are not activated by CYC in Arabidopsis, suggesting that co-option of RAD may have occurred specifically in the Antirrhinum lineage. Taken together, our results indicate that floral asymmetry may have arisen through evolutionary tinkering with the strengths and pattern of connections at several points in a gene regulatory network.  相似文献   

6.
NMR paramagnetic relaxation enhancement (PRE) provides long‐range distance constraints (~15–25 Å) that can be critical to determining overall protein topology, especially where long‐range NOE information is unavailable such as in the case of larger proteins that require deuteration. However, several challenges currently limit the use of NMR PRE for α‐helical membrane proteins. One challenge is the nonspecific association of the nitroxide spin label to the protein‐detergent complex that can result in spurious PRE derived distance restraints. The effect of the nitroxide spin label contaminant is evaluated and quantified and a robust method for the removal of the contaminant is provided to advance the application of PRE restraints to membrane protein NMR structure determination.  相似文献   

7.
The assembly of the phosphoglyceride-linked form of enterobacterial common antigen (ECA(PG)) occurs by a mechanism that involves modulation of polysaccharide chain length. However, the genetic determinant of this modulation has not been identified. Site-directed mutagenesis of o349 of the Escherichia coli K-12 wec gene cluster revealed that this locus encodes a Wzz protein that specifically modulates the chain length of ECA(PG) polysaccharides, and we have designated this locus wzz(ECA). The Wzz(ECA)-mediated modulation of ECA(PG) polysaccharide chains is the first demonstrated example of Wzz regulation involving a polysaccharide that is not linked to the core-lipid A structure of lipopolysaccharide.  相似文献   

8.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

9.
The extensive interaction between mitochondrial-encoded and nuclear-encoded subunits of electron transport system (ETS) enzymes in mitochondria is expected to lead to intergenomic coadaptation. Whether this coadaptation results from adaptation to the environment or from fixation of deleterious mtDNA mutations followed by compensatory nuclear gene evolution is unknown. The intertidal copepod Tigriopus californicus shows extreme divergence in mtDNA sequence and provides an excellent model system for study of intergenomic coadaptation. Here, we examine genes encoding subunits of complex III of the ETS, including the mtDNA-encoded cytochrome b (CYTB), the nuclear-encoded rieske iron-sulfur protein (RISP), and cytochrome c(1) (CYC1). We compare levels of polymorphism within populations and divergence between populations in these genes to begin to untangle the selective forces that have shaped evolution in these genes. CYTB displays dramatic divergence between populations, but sequence analysis shows no evidence for positive selection driving this divergence. CYC1 and RISP have lower levels of sequence divergence between populations than CYTB, but, again, sequence analysis gives no evidence for positive selection acting on them. However, an examination of variation at cytochrome c (CYC), a nuclear-encoded protein that transfers electrons between complex III and complex IV provides evidence for selective divergence. Hence, it appears that rapid evolution in mitochondrial-encoded subunits is not always associated with rapid divergence in interacting subunits (CYC1 and RISP), but can be in some cases (CYC). Finally, a comparison of nuclear-encoded and mitochondrial-encoded genes from T. californicus suggests that substitution rates in the mitochondrial-encoded genes are dramatically increased relative to nuclear genes.  相似文献   

10.
We demonstrate that short, medium and long-range constraints can be extracted from proton mediated, rare-spin detected correlation solid-state NMR experiments for the microcrystalline 10.4 × 2 kDa dimeric model protein Crh. Magnetization build-up curves from cross signals in NHHC and CHHC spectra deliver detailed information on side chain conformers and secondary structure for interactions between spin pairs. A large number of medium and long-range correlations can be observed in the spectra, and an analysis of the resolved signals reveals that the constraints cover the entire sequence, also including inter-monomer contacts between the two molecules forming the domain-swapped Crh dimer. Dynamic behavior is shown to have an impact on cross signals intensities, as indicated for mobile residues or regions by contacts predicted from the crystal structure, but absent in the spectra. Our work validates strategies involving proton distance measurements for large and complex proteins as the Crh dimer, and confirms the magnetization transfer properties previously described for small molecules in solid protein samples. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
We have used the homonuclear Overhauser effect (NOE) to characterize a model protein: carbonic anhydrase B. We have obtained NOE difference spectra for this protein, centering the on-resonance signals either at the methyl-proton or at the water-proton signals. The spin-diffusion spectra obtained as a function of protein concentration and temperature provide direct evidence of much greater protein-water interaction in the molten-globule state than in the native and denatured states. Furthermore, although the protein loses its gross tertiary structure in both the molten-globule and denatured states, it remains almost as compact in its molten-globule state as it is in the native state. The spin-diffusion spectra, obtained as a function of a variable delay time after the saturation pulse, allowed us to measure the relaxation times of several types of proton in the solution. These spectra contain enough information to distinguish between those water molecules solvating the protein and the free ones present as bulk water.  相似文献   

12.
K Pfeifer  T Prezant  L Guarente 《Cell》1987,49(1):19-27
We show that the HAP1 protein binds in vitro to the upstream activation site (UAS) of the yeast CYC7 gene. Strikingly, this sequence bears no obvious similarity to the sequence bound by HAP1 at UAS1 of the CYC1 gene. The CYC1 and CYC7 sites compete for binding to HAP1 and have comparable affinities for the protein. The gross features of the interaction of HAP1 with the two sites are similar: multiple major and minor groove contacts, spanning 23 bp, on one helical face, with a back-side major groove contact toward one end. The precise positions of the contacts differ, however. A mutant form of HAP1, HAP1-18, abolishes the ability of the protein to bind to UAS1 but not CYC7 DNA. Possible mechanisms for how a single protein recognizes two sequences are discussed.  相似文献   

13.
Low in vivo solubility of recombinant proteins expressed in Escherichia coli can seriously hinder the purification of structural samples for large-scale proteomic NMR and X-ray crystallography studies. Previous results from our laboratory have shown that up to one half of all bacterial and archaeal proteins are insoluble when overexpressed in E. coli. Although a number of strategies may be used to increase in vivo protein solubility, there are no generally applicable methods, and the expression of each insoluble recombinant protein must be individually optimized. For this reason, we have tested a generic denaturation/refolding protein purification procedure to assess the number of structural samples that could be generated by using this methodology. Our results show that a denaturation/refolding protocol is appropriate for many small proteins (相似文献   

14.
15.
Serologically characterized samples of enterobacterial common antigen (ECA) from Plesiomonas shigelloides, Salmonella montevideo and Shigella sonnei were investigated by chemical methods including methylation and NMR techniques. All showed the same sugar composition and contained a lipid moiety with palmitic acid as main fatty acid and with a phosphodiester group. Additional enzymatic studies, reported in the preceding paper, provided evidence that the lipid moiety is an L-glycerophosphatidyl residue attached via a phosphodiester linkage to C-1 of GlcNAc as the reducing end of the ECA sugar chain. ECA of P. shigelloides showed the best-resolved 13C-NMR spectra, especially after the removal of non-stoichiometric O-acetyl groups at C-6 of GlcNAc of the ECA repeating unit and of the lipid moiety by mild acid hydrolysis (0.01 M HCl, 100 degrees C, 10 min). Subsequent 13C-NMR studies were therefore carried out with the mild-acid-treated ECA of P. shigelloides which allowed a tentative assignment of all resonances of the ECA repeating unit. 13C-NMR spectra of Salmonella and Shigella ECA were essentially the same as those obtained with Plesiomonas ECA. The same trisaccharide repeating unit was encountered as demonstrated previously in the cyclic form of ECA isolated from S. sonnei by Dell et al. [Carbohydr. Res. 133, 95-104 (1984)]. Methylation analysis, however, afforded small amounts of terminal GlcNAc thus proving, in combination with the demonstration of the attached lipid moiety, an acyclic nature of ECA from P. shigelloides and from the two enterobacterial species. The question of whether the cyclic form co-exists in S. sonnei phase I and possibly in other enterobacterial species or, whether it had been formed during extraction as an artifact, has not yet been answered. The way in which ECA was isolated in our studies would preclude the presence of a non-amphiphilic (cyclic) polysaccharide. The finding that the sugar chain of ECA is attached to an L-glycerophosphatidyl residue is in full corroboration with serological, enzymatic and gel electrophoretic studies shown in the preceding paper and with the character of ECA as a surface antigen being anchored by hydrophobic interactions in the outer membrane of Enterobacteriaceae and P. shigelloides.  相似文献   

16.
The enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade. In addition, a detailed analysis of wec cluster mutant strains, which provoke the disruption of the ECA biosynthesis at different levels of the pathway, suggests that the absence of the periplasmic ECA cyclic structure could constitute a potential signal detected by the RcsF-RcsCDB phosphorelay. We also identify SMA1167 as a member of the S. marcescens Rcs regulon and show that high osmolarity induces Rcs activity in this bacterium. These results provide a new perspective from which to understand the phylogenetic conservation of ECA among enterobacteria and the basis for the virulence attenuation detected in wec mutant strains in other pathogenic bacteria.  相似文献   

17.
18.
Intestinal fatty acid-binding protein (I-FABP) has a clam-shaped structure that may serve as a scaffold for the design of artificial enzymes and drug carriers. In an attempt to optimize the scaffold for increased access to the interior-binding cavity, several helix-less variants of I-FABP have been engineered. The solution-state NMR structure of the first generation helix-less variant, known as Delta17-SG, revealed a larger-than-expected and structurally ill-defined loop flanking the deletion site. We hypothesized that the presence of this loop, on balance, was energetically unfavorable for the stability of the protein. The structure exhibited no favorable pairwise or nonpolar interactions in the loop that could offset the loss of configurational entropy associated with the folding of this region of the protein. As an attempt to generate a more stable protein, we engineered a second-generation helix-less variant of I-FABP (Delta27-GG) by deleting 27 contiguous residues of the wild-type protein and replacing them with a G-G linker. The deletion site of this variant (D9 through N35) includes the 10 residues spanning the unstructured loop of Delta17-SG. Chemical denaturation experiments using steady-state fluorescence spectroscopy showed that the second-generation helix-less variant is energetically more stable than Delta17-SG. The three-dimensional structure of apo-Delta27-GG was solved using triple-resonance NMR spectroscopy along with the structure calculation and refinement protocols contained in the program package ARIA/CNS. In spite of the deletion of 27 residues, the structure assumes a compact all-beta-sheet fold with no unstructured loops and open access to the interior cavity.  相似文献   

19.
The misidentification of a protein sample, or contamination of a sample with the wrong protein, may be a potential reason for the non‐reproducibility of experiments. This problem may occur in the process of heterologous overexpression and purification of recombinant proteins, as well as purification of proteins from natural sources. If the contaminated or misidentified sample is used for crystallization, in many cases the problem may not be detected until structures are determined. In the case of functional studies, the problem may not be detected for years. Here several procedures that can be successfully used for the identification of crystallized protein contaminants, including: (i) a lattice parameter search against known structures, (ii) sequence or fold identification from partially built models, and (iii) molecular replacement with common contaminants as search templates have been presented. A list of common contaminant structures to be used as alternative search models was provided. These methods were used to identify four cases of purification and crystallization artifacts. This report provides troubleshooting pointers for researchers facing difficulties in phasing or model building.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号