首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown that the synapse maturation phase of synaptogenesis is a model for synaptic plasticity that can be particularly well-studied in chicken forebrain because for most forebrain synapses, the maturation changes occur slowly and are temporally well-separated from the synapse formation phase. We have used the synapse maturation phase of neuronal development in chicken forebrain to investigate the possible link between changes in the morphology and biochemical composition of the postsynaptic density (PSD) and the functional properties of glutamate receptors overlying the PSD. Morphometric studies of PSDs in forebrains and superior cervical ganglia of chickens and rats have shown that the morphological features of synapse maturation are characteristic of a synaptic type, but that the rate at which these changes occur can vary between types of synapses within one animal and between synapses of the same type in different species. We have investigated, during maturation in the chicken forebrain, the properties of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptors, which are concentrated in the junctional membranes overlying thick PSDs in the adult. There was no change in the number of NMDA receptors during maturation, but there was an increase in the rate of NMDA-stimulated uptake of 45Ca2+ into brain prisms. This functional change was not seen with the other ionotropic subtypes of the glutamate receptor and was NMDA receptor-mediated. The functional change also correlated with the increase in thickness of the PSD during maturation that has previously been shown to be due to an increase in the amount of PSD associated Ca(2+)-calmodulin stimulated protein kinase II (CaM-PK II). Our results provide strong circumstantial evidence for the regulation of NMDA receptors by the PSD and implicate changing local concentrations of CaM-PK II in this process. The results also indicate some of the ways in which properties of existing synapses can be modified by changes at the molecular level.  相似文献   

2.
 Different mechanisms that could form the molecular basis for bi-directional synaptic plasticity have been identified experimentally and corresponding biophysical models can be constructed. However, such models are complex and therefore it is hard to deduce their consequences to compare them to existing abstract models of synaptic plasticity. In this paper we examine two such models: a phenomenological one inspired by the phenomena of AMPA receptor insertion, and a more complex biophysical model based on the phenomena of AMPA receptor phosphorylation. We show that under certain approximations both these models can be mapped on to an equivalent, calcium-dependent, differential equation. Intracellular calcium concentration varies locally in each postsynaptic compartment, thus the plasticity rule we extract is a single-synapse rule. We convert this single synapse plasticity equation to a multi-synapse rule by incorporating a model of the NMDA receptor. Finally we suggest a mathematical embodiment of metaplasticity, which is consistent with observations on NMDA receptor properties and dependence on cellular activity. These results, in combination with some of our previous results, produce converging evidence for the calcium control hypothesis including a dependence of synaptic plasticity on the level of intercellular calcium as well as on the temporal pattern of calcium transients. Received: 24 April 2002 / Accepted: 15 May 2002 Acknowledgements. LCY was supported by a Burroughs Wellcome fellowship, GCC by Murst 60%. Correspondence to: H. Z. Shouval (e-mail: Harel_Shouval@brown.edu)  相似文献   

3.
Synaptic transmission is the key system for the information transfer and elaboration among neurons. Nevertheless, a synapse is not a standing alone structure but it is a part of a population of synapses inputting the information from several neurons on a specific area of the dendritic tree of a single neuron. This population consists of excitatory and inhibitory synapses the inputs of which drive the postsynaptic membrane potential in the depolarizing (excitatory synapses) or depolarizing (inhibitory synapses) direction modulating in such a way the postsynaptic membrane potential. The postsynaptic response of a single synapse depends on several biophysical factors the most important of which is the value of the membrane potential at which the response occurs. The concurrence in a specific time window of inputs by several synapses located in a specific area of the dendritic tree can, consequently, modulate the membrane potential such to severely influence the single postsynaptic response. The degree of modulation operated by the synaptic population depends on the number of synapses active, on the relative proportion between excitatory and inbibitory synapses belonging to the population and on their specific mean firing frequencies. In the present paper we show results obtained by the simulation of the activity of a single Glutamatergic excitatory synapse under the influence of two different populations composed of the same proportion of excitatory and inhibitory synapses but having two different sizes (total number of synapses). The most relevant conclusion of the present simulations is that the information transferred by the single synapse is not and independent simple transition between a pre- and a postsynaptic neuron but is the result of the cooperation of all the synapses which concurrently try to transfer the information to the postsynaptic neuron in a given time window. This cooperativeness is mainly operated by a simple mechanism of modulation of the postsynaptic membrane potential which influences the amplitude of the different components forming the postsynaptic excitatory response.  相似文献   

4.
Dynamic alteration of the synaptic strength is one of the most important processes occurring in the nervous system. Combination of electrophysiology, confocal imaging and molecular biology led to significant advances in this research field. Yet, a progress in this area, in particular in studies of changes in the quantal behavior of central synapses and impact of glial cells on individual synapses, is hampered by technical difficulties of resolving small quantal synaptic currents. In this paper we will show how the technique of non-enzymatic vibro-dissociation, which enables to isolate living neurons avoiding artifacts of cell culture and preserving functional synapse, can be used to obtain a valuable information on fine details and mechanisms of synaptic plasticity. In particular, we will describe our recent results on Ca2+-dependent modulation of the postsynaptic AMPA and NMDA receptors in the individual synaptic boutons.  相似文献   

5.
The astrocyte is a major glial cell type of the brain, and plays key roles in the formation, maturation, stabilization and elimination of synapses. Thus, changes in astrocyte condition and age can influence information processing at synapses. However, whether and how aging astrocytes affect synaptic function and maturation have not yet been thoroughly investigated. Here, we show the effects of prolonged culture on the ability of astrocytes to induce synapse formation and to modify synaptic transmission, using cultured autaptic neurons. By 9 weeks in culture, astrocytes derived from the mouse cerebral cortex demonstrated increases in β-galactosidase activity and glial fibrillary acidic protein (GFAP) expression, both of which are characteristic of aging and glial activation in vitro. Autaptic hippocampal neurons plated on these aging astrocytes showed a smaller amount of evoked release of the excitatory neurotransmitter glutamate, and a lower frequency of miniature release of glutamate, both of which were attributable to a reduction in the pool of readily releasable synaptic vesicles. Other features of synaptogenesis and synaptic transmission were retained, for example the ability to induce structural synapses, the presynaptic release probability, the fraction of functional presynaptic nerve terminals, and the ability to recruit functional AMPA and NMDA glutamate receptors to synapses. Thus the presence of aging astrocytes affects the efficiency of synaptic transmission. Given that the pool of readily releasable vesicles is also small at immature synapses, our results are consistent with astrocytic aging leading to retarded synapse maturation.  相似文献   

6.
Adaptation to synaptic inactivity in hippocampal neurons   总被引:1,自引:0,他引:1  
In response to activity deprivation, CNS neurons undergo slow adaptive modification of unitary synaptic transmission. The changes are comparable in degree to those induced by brief intense stimulation, but their molecular basis is largely unknown. Our data indicate that prolonged AMPAR blockade acts through loss of Ca2+ entry through L-type Ca2+ channels to bring about an increase in both vesicle pool size and turnover rate, as well as a postsynaptic enhancement of the contribution of GluR1 homomers, concentrated at the largest synapses. The changes were consistent with a morphological scaling of overall synapse size, but also featured a dramatic shift toward synaptic drive contributed by the Ca2+-permeable homomeric GluR1 receptors. These results extend beyond "synaptic homeostasis" to involve more profound changes that can be better described as "metaplasticity".  相似文献   

7.
The prevailing view at present is that postsynaptic expression of the classical NMDA receptor-dependent long-term potentiation relies on an increase in the numbers of local AMPA receptors (AMPARs). This is thought to parallel an expansion of postsynaptic cell specializations, for instance dendritic spine heads, which accommodate synaptic receptor proteins. However, glutamate released into the synaptic cleft can normally activate only a hotspot of low-affinity AMPARs that occur in the vicinity of the release site. How the enlargement of the AMPAR pool is causally related to the potentiated AMPAR current remains therefore poorly understood. To understand possible scenarios of postsynaptic potentiation, here we explore a detailed Monte Carlo model of the typical small excitatory synapse. Simulations suggest that approximately 50% increase in the synaptic AMPAR current could be provided by expanding the existing AMPAR pool at the expense of 100–200% new AMPARs added at the same packing density. Alternatively, reducing the inter-receptor distances by only 30–35% could achieve a similar level of current potentiation without any changes in the receptor numbers. The NMDA receptor current also appears sensitive to the NMDA receptor crowding. Our observations provide a quantitative framework for understanding the ‘resource-efficient’ ways to enact use-dependent changes in the architecture of central synapses.  相似文献   

8.
Assembly of synapses requires proper coordination between pre- and postsynaptic elements. Identification of cellular and molecular events in synapse formation and maintenance is a key step to understand human perception, learning, memory, and cognition. A key role for astrocytes in synapse formation and function has been proposed. Here, we show that transforming growth factor β (TGF-β) signaling is a novel synaptogenic pathway for cortical neurons induced by murine and human astrocytes. By combining gain and loss of function approaches, we show that TGF-β1 induces the formation of functional synapses in mice. Further, TGF-β1-induced synaptogenesis involves neuronal activity and secretion of the co-agonist of the NMDA receptor, d-serine. Manipulation of d-serine signaling, by either genetic or pharmacological inhibition, prevented the TGF-β1 synaptogenic effect. Our data show a novel molecular mechanism that might impact synaptic function and emphasize the evolutionary aspect of the synaptogenic property of astrocytes, thus shedding light on new potential therapeutic targets for synaptic deficit diseases.  相似文献   

9.
Kwon HB  Castillo PE 《Neuron》2008,57(1):108-120
The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP that is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this "classical" LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors and a postsynaptic calcium rise. Unlike classical LTP, expression of this mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network.  相似文献   

10.
Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses.  相似文献   

11.
Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. Here we show that a threshold level of NMDA receptor activation must be exceeded to trigger a stable loss of AMPA receptors from the surface of cultured hippocampal neurons. NMDA also causes displacement of protein kinase A from the synapse, and inhibiting protein kinase A (PKA) activity mimics the NMDA-induced loss of surface AMPA receptors. PKA is targeted to the synapse by an interaction with the A kinase-anchoring protein, AKAP79/150. Disruption of the PKA-AKAP interaction is sufficient to cause a long-lasting reduction in synaptic AMPA receptors in cultured neurons. In addition, we demonstrate in hippocampal slices that displacement of PKA from AKADs occludes synaptically induced long term depression. These data indicate that synaptic anchoring of PKA through association with AKAPs plays an important role in the regulation of AMPA receptor surface expression and synaptic plasticity.  相似文献   

12.
We have created a mouse genetic model that mimics?a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder.  相似文献   

13.
Neurons of the vertebrate central nervous system have the capacity to modify synapse number, morphology, and efficacy in response to activity. Some of these functions can be attributed to activity-induced synthesis and secretion of the neurotrophin brain-derived neurotrophic factor (BDNF); however, the molecular mechanisms by which BDNF mediates these events are still not well understood. Using time-lapse confocal analysis, we show that BDNF mobilizes synaptic vesicles at existing synapses, resulting in small clusters of synaptic vesicles "splitting" away from synaptic sites. We demonstrate that BDNF's ability to mobilize synaptic vesicle clusters depends on the dissociation of cadherin-beta-catenin adhesion complexes that occurs after tyrosine phosphorylation of beta-catenin. Artificially maintaining cadherin-beta-catenin complexes in the presence of BDNF abolishes the BDNF-mediated enhancement of synaptic vesicle mobility, as well as the longer-term BDNF-mediated increase in synapse number. Together, this data demonstrates that the disruption of cadherin-beta-catenin complexes is an important molecular event through which BDNF increases synapse density in cultured hippocampal neurons.  相似文献   

14.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   

15.
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as “SynTAMs” for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.  相似文献   

16.
Coexistence of AMPA and NMDA receptors in glutamatergic synapses leads to a cooperative effect that can be very complex. This effect is dependent on many parameters including the relative and absolute number of the two types of receptors and biophysical parameters that can vary among synapses of the same cell. Herein we simulate the AMPA/NMDA cooperativity by using different number of the two types of receptors and considering the effect of the spine resistance on the EPSC production. Our results show that the relative number of NMDA with respect to AMPA produces a different degree of cooperation which depends also on the spine resistance.  相似文献   

17.
Proteolytic enzymes can have significant effects on the physiological properties of neurons. Although several actions of proteolytic enzymes on the physiology of single neurons have been described, the effects of these enzymes on network properties in the central nervous system (CNS) have received less attention. The effects of bath-applied pronase (0.05%) on synaptic connections and spontaneous activity in theLymnaea CNS were examined. Brief application (i.e. 2–3 min) of pronase modified some, but not all, synapses in the CNS. For example, the chemical synapse between two interneurons, RPeD11 and RPeD1, and between the interneuron, RPeD1, and RPA motoneurons were examined. Both these synapses were either biphasic or monophasic (depolarizing) under control conditions. Pronase exposure eliminated the depolarizing phase of the RPeD11→RPeD1 synapse, but had no effect on the connection between RPeD1 and RPA neurons. In addition, the effects of pronase on electrical-coupling between two peptidergic neurons, VD1 and RPD2, in the CNS were investigated. Pronase decreased the total network input resistance and cell input resistances as well as the steady-state coupling ratio. Furthermore, exposure to pronase induced various changes (i.e. depolarization, hyperpolarization, bursting patterns and afterdischarges) in the activity pattern of different identified neurons in the CNS. Collectively, these data show that even brief exposure to a low concentration of pronase can acutely modify both synapses and neuronal activity.  相似文献   

18.
Glutamate-releasing synapses are essential in fast neuronal signalling. Plasticity at these synapses is important for learning and memory as well as for the activity-dependent control of neuronal development. We have evaluated the trial-to-trial fluctuations of excitatory postsynaptic currents mediated by glutamate receptors of the AMPA and NMDA types in CA1 pyramidal cells. By using the whole cell patch clamp technique in brain slices from young rats, we have demonstrated that the relative variability of AMPA and NMDA receptor mediated responses, expressed as the coefficient of variation, is similar for these two types of responses [Brain Res. 800 (1998) 253-259]. The present paper summarizes and discusses these results in relation to current theories on hippocampal synaptic plasticity, especially with regard to the ideas of glutamate spillover and silent synapses. Our finding of a correspondence between AMPA and NMDA responses with respect to fluctuations is compatible with our previous finding of equal relative changes of the two during activity induced synaptic plasticity. However, the results argue against the glutamate spillover model according to which the effect of glutamate--and hence the induction of plasticity--may spread unspecifically between synapses. But how can silent synapses become functional if no spread of glutamate occurs and no initial signal is present to trigger the functionalization? Is it necessary that NMDA responses are present at these synapses, which are then silent merely with respect to AMPA receptors, or do other alternatives exist? Our discussion aims to elucidate these questions.  相似文献   

19.
Differences in neuronal activity produced by electrical stimulation lead to competition between synapses from sensory afferents converging on a common spinal cord neuron. Studies were performed on neurons dissociated from the mouse spinal cord and grown in culture dishes with three compartments. Synaptic efficacy from stimulated afferents was increased compared with unstimulated convergents, and the number of functional connections was increased by stimulation compared with control cultures. Blocking NMDA channel activation with 100 microM APV in medium containing 1.8 mM calcium inhibited this synaptic plasticity, but plasticity was not blocked by APV in medium in which the calcium concentration was elevated to 3 mM. These experiments support the view that electrical activity differentially influences processes that cause a persistent decrease in synaptic efficacy or lead to synapse elimination and those that increase synaptic strength or lead to synapse augmentation. We interpret our results in terms of a model in which these antagonistic mechanisms are both regulated via changes in calcium levels and second messengers that are modulated by electrical activity. A significant portion of the activity-related calcium influx relevant to synaptic plasticity passes through the NMDA channel, but other sources of calcium are involved. In particular, competitive elimination of synapses appears to occur during blockade of NMDA channels if the extracellular concentration of calcium is elevated moderately. The outcome of competition between the two calcium-dependent but antagonistic processes may depend either on their differential sensitivity to intracellular calcium concentration or separate specificities to NMDA and non-NMDA receptor-linked mechanisms.  相似文献   

20.
Long-term potentiation and long-term depression (LTP/LTD) can be elicited by activating N-methyl-d-aspartate (NMDA)-type glutamate receptors, typically by the coincident activity of pre- and postsynaptic neurons. The early phases of expression are mediated by a redistribution of AMPA-type glutamate receptors: More receptors are added to potentiate the synapse or receptors are removed to weaken synapses. With time, structural changes become apparent, which in general require the synthesis of new proteins. The investigation of the molecular and cellular mechanisms underlying these forms of synaptic plasticity has received much attention, because NMDA receptor–dependent LTP and LTD may constitute cellular substrates of learning and memory.Long-term synaptic plasticity is a generic term that applies to a long-lasting experience-dependent change in the efficacy of synaptic transmission. Here we will focus on N-methyl-d-aspartate (NMDA) receptor–dependent synaptic potentiation (LTP) and depression (LTD), two forms of activity-dependent long-term changes in synaptic efficacy that have been extensively studied. Because both LTP and LTD are believed to represent cellular correlates of learning and memory, they have attracted considerable interest. In this article we will focus on the molecular and cellular mechanisms associated with LTP and LTD. As for other forms of long-term synaptic plasticity, a characterization of LTP and LTD involves describing the molecular mechanisms that are required to elicit the change (induction), followed by an investigation of the mechanism of expression (hours) and maintenance (days). The best-characterized form of NMDA receptor (NMDAR)-dependent LTP occurs between CA3 and CA1 pyramidal neurons of the hippocampus (Fig. 1). Throughout the chapter we will mostly refer to this specific form of LTP. At these CA3-CA1 Schaffer collateral synapses, the loci of both induction and expression are situated in the postsynaptic neuron.Open in a separate windowFigure 1.NMDAR-dependent LTD and LTP in the hippocampus. (A) Historical drawing by Ramon y Cajal (1909) of the trisynaptic pathway in the hippocampus. LTP and LTD are induced by activation of NMDARs at synapses between CA3 and CA1 pyramidal neurons (blue and red). In contrast, LTP at mossy fiber synapses onto CA3 neurons (green on blue) is NMDAR-independent. (B) This electron microscopy image shows the densely packed neuropil in the CA1 region of the hippocampus and highlights two asymmetric CA3-CA1 synapses. Note the typical “bouton en passant” configuration of synapse 1 and the prominent spine in synapse 2. The postsynaptic densities (PSDs) are visible. Scale bar, 200 nm. (Image kindly provided by Rafael Luján, Universitad de Castilla-La Mancha.) (C) Bidirectional change in CA3-CA1 synaptic efficacy by LTD and LTP in the same synapses monitored by extracellular field recordings in an acute slice preparation of the hippocampus. Note the contrasting induction protocols (Data from C Lüscher, unpubl.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号