首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is envisaged that the motor control of the intercostal musculature--an assembly of mobile structures--can be characterized in terms of a conceptual spatially continuous control function, that underlies the discretely distributed muscular activity and reflects an inferred global dynamic control of the thoracic cage during breathing. The global control function is estimated by the spatio-temporal pattern obtained by averaging in time and space and interpolation of multichannel simultaneous intercostal EMG recording in the anaesthetized cat. Different examples of the experimental preparation in the presence of stimuli of different kinds are analysed. The resultant signal patterns are found to be self-consistent and capable of exhibiting systematically differing features in systematically differing experimental conditions, thus supporting the validity of the analysis and the choice of the estimator. It is concluded that a more detailed analysis of the requirements of this approach is then warranted. Such requirements are discussed, and, specifically, results that bear on the adequacy of spatial sampling rate are presented. It is suggested that such methods offer a promising approach in the study of motor control strategies of the respiratory apparatus.  相似文献   

2.
Recent studies suggest that the external intercostal (EI) muscles of the upper rib cage, like the parasternals (PA), play an important ventilatory role, even during eupneic breathing. The purpose of the present study was to further assess the ventilatory role of the EI muscles by determining their response to various static and dynamic respiratory maneuvers and comparing them with the better-studied PA muscles. Applied interventions included 1) passive inflation and deflation, 2) abdominal compression, 3) progressive hypercapnia, and 4) response to bilateral cervical phrenicotomy. Studies were performed in 11 mongrel dogs. Electromyographic (EMG) activities were monitored via bipolar stainless steel electrodes. Muscle length (percentage of resting length) was monitored with piezoelectric crystals. With passive rib cage inflation produced either with a volume syringe or abdominal compression, each muscle shortened; with passive deflation, each muscle lengthened. During eupneic breathing, each muscle was electrically active and shortened to a similar degree. In response to progressive hypercapnia, peak EMG of each intercostal muscle increased linearly and to a similar extent. Inspiratory shortening also increased progressively with increasing PCO2, but in a curvilinear fashion with no significant differences in response among intercostal muscles. In response to phrenicotomy, the EMG and degree of inspiratory shortening of each intercostal muscle increased significantly. Again, the response among intercostal muscles was not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Patterns of intercostal muscle activity in humans   总被引:3,自引:0,他引:3  
Coordination of activity of inspiratory intercostal muscles in conscious human subjects was studied by means of an array of electromyograph (EMG) electrodes. Bipolar fine wire electrodes were placed in the second and fourth parasternal intercostal muscles and in two or three external intercostal muscles in the midaxillary line from the fourth to eighth intercostal spaces. Subjects breathed quietly or rebreathed from a bag containing 8% CO2 in O2 in both supine and upright postures. Respiration was monitored by means of flow, volume, and separate rib cage and abdominal volumes. Onset of EMG activity in each breath was found near the beginning of inspiration in the uppermost intercostal spaces but progressively later in inspiration in lower spaces, indicating that activity spreads downward across the rib cage through inspiration. At higher ventilation stimulated by CO2, activity spread further and faster downward. In voluntary deep breathing, external intercostal muscles tended to be recruited earlier in inspiration than in CO2-stimulated breathing. The change from supine to sitting resulted in small and inconsistent changes. There was no lung volume or rib cage volume threshold for appearance of EMG activity in any of the spaces.  相似文献   

4.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The actions of the intercostal and paraspinal muscles in stabilizing the human upper rib cage have been analyzed using a geometrically realistic mathematical model of the first six ribs, vertebrae, and associated musculature. The model suggests roles of the deep layers of erector spinae in stabilizing the vertebral column so that it can support the loads placed upon it by the ribs under physiological load. If we assume that the tension exerted by an intercostal muscle is proportional to its local thickness, the model predicts that the observed distribution of intercostal thickness is close to that which minimizes the stresses in ribs when the model is subjected to peak physiological load. The observed shape of the ribs are optimal to withstand the calculated pattern of loading along their length. These calculations raise the hypothesis that the arrangement of intercostal musculature and rib geometry result in an optimally light rib cage, which is capable of withstanding the loads placed upon it. The analysis of the mechanics of the entire model indicates that the geometrical simplifications made in Hamberger's model are not valid when applied to the rib cage.  相似文献   

6.
Regional variations in the discharge patterns of the internal and external intercostal muscles of the middle and caudad thorax were studied in decerebrate, spontaneously breathing cats during coughing and vomiting. Coughing, induced by electrical stimulation of the superior laryngeal nerves, consisted of increased and prolonged diaphragmatic activity followed by a burst of abdominal activity. Mid-thoracic external and internal intercostal muscles discharged synchronously with the diaphragm and abdominal muscles, respectively. Caudal external and internal intercostal muscles, however, discharged synchronously with the abdominal muscles. Vomiting, induced by stimulation of the lower thoracic vagi, consisted of a series of synchronous bursts of diaphragmatic and abdominal activity (retching) followed by a prolonged abdominal discharge after the cessation of diaphragmatic activity (expulsion). Caudal external and internal intercostals discharged in phase with diaphragmatic and abdominal activity but both mid-thoracic intercostal muscles discharged out of phase with these muscles. These results indicate major differences in the control and functional roles of intercostal muscles at different thoracic levels during these behaviours.  相似文献   

7.
The vertebrate body wall is regionalized into thoracic and lumbosacral/abdominal regions that differ in their morphology and developmental origin. The thoracic body wall has ribs and intercostal muscles, which develops from thoracic somites, whereas the abdominal wall has abdominal muscles, which develops from lumbosacral somites without ribs cage. To examine whether limb-genesis interferes with body wall-genesis, and to test the possibility that limb generation leads to the regional differentiation, an ectopic limb was induced in the thoracic region by transplanting prospective limb somatopleural mesoderm of Japanese quail between the ectoderm and somatopleural mesoderm of the chick prospective thoracic region. This ectopic limb generation induced the somitic cells to migrate into the ectopic limb mesenchyme to become its muscles and caused the loss of distal thoracic body wall (sterno-distal rib and distal intercostal muscle), without causing any significant effect on the more proximal region (proximal rib, vertebro-distal rib and proximal intercostal muscle). According to a new primaxial–abaxial classification, the proximal region is classified as primaxial and the distal region, as well as limb, is classified as abaxial. We demonstrated that ectopic limb development interfered with body wall development via its influence on the abaxial somite derivatives. The present study supports the idea that the somitic cells give rise to the primaxial derivatives keeping their own identity and fate, whereas they produce the abaxial derivatives responding to the lateral plate mesoderm.  相似文献   

8.
Intercostal muscle action inferred from finite-element analysis   总被引:2,自引:0,他引:2  
The external and internal intercostal muscles are important respiratory muscles in humans, but their mechanical actions have been controversial. We used finite-element analysis based on anatomic and mechanical measurements in dogs to assess the action of the intercostal and other rib cage muscles in a model of an isolated canine rib cage. When intercostal muscle forces of either the internal or the external layer were applied in a single interspace, they pulled the adjacent ribs together, consistent with published observations in dogs. However, when the forces were applied in all interspaces, the external layer caused an inspiratory motion and the internal layer caused an expiratory motion, consistent with conventional understanding of intercostal muscle actions. Parasternal intercostal, levator costae, and transversus thoracis (triangularis sterni) muscle actions were also simulated. These muscles caused expected movements of the ribs and sternum. We conclude that the actions of intercostal muscles depend on the spatial extent of their activation. Their actions in a single interspace and in multiple interspaces can be observed and explained with three-dimensional finite-element models.  相似文献   

9.
The electrical activity of the respiratory skeletal muscles is altered in response to reflexes originating in the gastrointestinal tract. The present study evaluated the reflex effects of esophageal distension (ED) on the distribution of motor activity to both inspiratory and expiratory muscles of the rib cage and abdomen and the resultant changes in thoracic and abdominal pressure during breathing. Studies were performed in 21 anesthetized spontaneously breathing dogs. ED was produced by inflating a balloon in the distal esophagus. ED decreased the activity of the costal and crural diaphragm and external intercostals and abolished all preexisting electrical activity in the expiratory muscles of the abdominal wall. On the other hand, ED increased the activity of the parasternal intercostals and expiratory muscles located in the rib cage (i.e., triangularis sterni and internal intercostal). All effects of ED were graded, with increasing distension exerting greater effects, and were eliminated by vagotomy. The effect of increases in chemical drive and lung inflation reflex activity on the response to ED was examined by performing ED while animals breathed either 6.5% CO2 or against graded levels of positive end-expiratory pressure (PEEP), respectively. Changes in respiratory muscle electrical activity induced by ED were similar (during 6.5% CO2 and PEEP) to those observed under control conditions. We conclude that activation of mechanoreceptors in the esophagus reflexly alters the distribution of motor activity to the respiratory muscles, inhibiting the muscles surrounding the abdominal cavity and augmenting the parasternals and expiratory muscles of the chest wall.  相似文献   

10.
The purpose of the present study was to examine the reflex effects of mechanical stimulation of intestinal visceral afferents on the pattern of respiratory muscle activation. In 14 dogs anesthetized with pentobarbital sodium, electromyographic activity of the costal and crural diaphragm, parasternal intercostal, and upper airway respiratory muscles was measured during distension of the small intestine. Rib cage and abdominal motion and tidal volume were also recorded. Distension produced an immediate apnea (11.16 +/- 0.80 s). During the first postapneic breath, costal (43 +/- 7% control) and crural (64 +/- 6% control) activity were reduced (P less than 0.001). In contrast, intercostal (137 +/- 11%) and upper airway muscle activity, including alae nasi (157 +/- 16%), genioglossus (170 +/- 15%), and posterior cricoarytenoid muscles (142 +/- 7%) all increased (P less than 0.005). There was greater outward rib cage motion although the abdomen moved paradoxically inward during inspiration, resulting in a reduction in tidal volume (82 +/- 6% control) (P less than 0.005). Postvagotomy distension produced a similar apnea and subsequent reduction in costal and crural activity. However, enhancement of intercostal and upper airway muscle activation was abolished and there was a greater fall in tidal volume (65 +/- 14%). In conclusion, mechanical stimulation of intestinal afferents affects the various inspiratory muscles differently; nonvagal afferents produce an initial apnea and subsequent depression of diaphragm activity whereas vagal pathways mediate selective enhancement of intercostal and upper airway muscle activation.  相似文献   

11.
The actions of several human respiratory muscles have been inferred from finite element analysis of the rib cage. The human model is based on anatomic and mechanical measurements in dogs and human cadavers. As in an earlier canine model, the external and internal (interosseous) intercostal muscles were found to cause, respectively, inspiratory and expiratory displacements of the rib cage, in agreement with the two-dimensional geometric analysis of Hamberger. When extended to three dimensions, Hamberger's analysis helps explain why muscles at the side of the rib cage produce changes in the anteroposterior diameter, whereas muscles at the front and back of the rib cage cause changes in the transverse diameter.  相似文献   

12.
Current finite element (FE) models of the human thorax are limited by the lack of local-level validation, especially in the ribcage. This study exercised an existing FE ribcage model for a 50th percentile male under quasi-static point loading and dynamic sternal loading. Both force-displacement and kinematic responses of the ribcage were compared against experimental data. The sensitivity of the model response to changes in the material properties of the costovertebral (CV) joints and intercostal muscles was assessed. The simulations found that adjustments to the CV joints tended to change the amount of rib rotation in the sagittal plane, while changes to the elastic modulus and thickness of the intercostal muscles tended to alter both the stiffness and the direction and magnitude of rib motions. This study can lend insight into the role that the material properties of these two thoracic structures play in the dynamics of the ribcage during a frontal loading condition.  相似文献   

13.
SYNOPSIS. This paper proposes a biomechanical model for locomotor-respiratorycoupling (LRC) in galloping mammals in which gait and breathingcycles are phase-locked on a 1:1 basis. It also explores someof the physiological and neuromotor implications of LRC. The mechanical coupling of locomotor and respiratory cyclesdepends upon the coordinated, reciprocal oscillations of thecranio-cervical and lumbo-pelvic components of the axial systemand their attendant actions on the intervening thorax via muscularlinkages. Concurrently, accelerational and decelerational forcesimparted to the axial system by the limbs help to drive lungventilation by inducing inertial displacements of a "visceralpiston’ connected to the diaphragm. Several lines of evidence(including cineradiographic data) suggest that an importantfunction of the crural diaphragm is to control the displacementof the visceral piston. The kinematics of LRC indicate thatthe interosseous intercostal muscles must simultaneously operateto assure thoracic stability against locomotor stresses as wellas to promote breathing. The former may be their more essentialrole, however. The characteristic design of the rib cage incursorial mammals (=deep and narrow) appears to maximize theleverage of certain "accessory respiratory muscles" (i.e., sternocleidomastoid,scalenes) while minimizing torsional loading of the thorax duringforelimb support. Physiological implications of LRC include the prediction thatlarge mammals will breathe relatively faster and with relativelysmaller lung volumes when galloping than small species. An additionalprediction, that running mammals could automatically gear lungventilation to speed by simply linking breathing rate to stridefrequency and depth of breath (=tidal volume) to stride length,appears to be supported by experimental data from horses. Finally,the neuromotor basis of LRC probably depends upon the directinteraction of central pattern generators for locomotion andrespiration. This interaction might be modulated, however, byafferent input from thoracic mechanoreceptors, particularlythe intercostal stretch receptors.  相似文献   

14.
Spinal deformity in the form of kyphosis or kyphoscoliosis occurs in most patients with Duchenne muscular dystrophy (DMD), a fatal X-linked disorder caused by an absence of the subsarcolemmal protein dystrophin. Mdx mice, which also lack dystrophin, show thoracolumbar kyphosis that progresses with age. We hypothesize that paraspinal and respiratory muscle weakness and fibrosis are associated with the progression of spinal deformity in this mouse model, and similar to DMD patients there is evidence of altered thoracic conformation and area. We measured kyphosis in mdx and age-matched control mice by monthly radiographs and the application of a novel radiographic index, the kyphotic index, similar to that used in boys with DMD. Kyphotic index became significantly less in mdx at 9 mo of age (3.58 +/- 0.12 compared with 4.27 +/- 0.04 in the control strain; P < or = 0.01), indicating more severe kyphosis, and remained less from 10 to 17 mo of age. Thoracic area in 17-mo-old mdx was reduced by 14% compared with control mice (P < or = 0.05). Peak tetanic tension was significantly lower in mdx and fell 47% in old mdx latissimus dorsi muscles, 44% in intercostal strips, and 73% in diaphragm strips (P < or = 0.05). Fibrosis of these muscles and the longissimus dorsi, measured by hydroxyproline analysis and histological grading of picrosirius red-stained sections, was greater in mdx (P < 0.05). We conclude that kyphotic index is a useful measure in mdx and other kyphotic mouse strains, and assessment of paralumbar and accessory respiratory muscles enhance understanding of spinal deformity in muscular dystrophy.  相似文献   

15.
The two mechanisms of intercostal muscle action on the lung.   总被引:2,自引:0,他引:2  
The mechanisms of respiratory action of the intercostal muscles were studied by measuring the effect of external forces (F) applied to the ribs and by modeling the effect of F exerted by the intercostal muscles. In five dogs, with the airway occluded, cranial F were applied to individual rib pairs, from the 2nd to the 11th rib pair, and the change in airway opening pressure (Pao) was measured. The ratio Pao/F increases with increasing rib number in the upper ribs (2nd to 5th) and decreases in the lower ribs (5th to 11th). These data were incorporated into a model for the geometry of the ribs and intercostal muscles, and Pao/F was calculated from the model. For interspaces 2-8, the calculated values agree reasonably well with previously measured values. From the modeling, two mechanisms of intercostal muscle action are identified. One is the well-known Hamberger mechanism, modified to account for the three-dimensional geometry of the rib cage. This mechanism depends on the slant of an intercostal muscle relative to the ribs and on the resulting difference between the moments applied to the upper and lower ribs that bound each interspace. The second is a new mechanism that depends on the difference between the values of Pao/F for the upper and lower ribs.  相似文献   

16.
Besides protecting the internal organs of the thorax, the rib cage is the site of numerous muscle attachments. It also decreases the overall flexibility of the thoracic spine. This study developed finite element (FE) models of the thoracic spine with and without the rib cage, and the effects of the rib cage on thoracic spine flexibility were determined. The numerical models were validated by comparing the maximum rotation of the models for several loading cases with experimental data in the literature. After adapting the material properties for the discs and ligaments, the calculated maximum rotations differed from the measured median values by less than 1 degrees without the rib cage and by less than 2.5 degrees with it. The rib cage decreased the mean flexibility of the thoracic spine by 23% to 47%, depending on the loading plane. Assuming the ribs to be rigid beams required a corresponding reduction of ligament stiffnesses in order to achieve the same agreement of the maximum rotations with the measured median values. Interconnecting the FE thoracic spine model plus rib cage with the existing detailed FE lumbar spine model improves the simulation of force directions of muscles attached to the rib cage or thoracolumbar spine. In addition, such a model is suitable for determining the effects of lumbar spine implants on spinal balance.  相似文献   

17.
Ventilation and electromyogram (EMG) activities of the right hemidiaphragm, parasternal intercostal, triangularis sterni, transversus abdominis, genioglossus, and alae nasi muscles were measured before and during central stimulation of the left thoracic phrenic nerve in 10 alpha-chloralose anesthetized vagotomized dogs. Pressure in the carotid sinuses was fixed to maintain baroreflex activity constant. The nerve was stimulated for 1 min with a frequency of 40 Hz and stimulus duration of 1 ms at voltages of 5, 10, 20, and 30 times twitch threshold (TT). At five times TT, no change in ventilation or EMG activity occurred. At 10 times TT, neither tidal volume nor breathing frequency increased sufficiently to reach statistical significance, although the change in their product (minute ventilation) was significant (P less than 0.05). At 20 and 30 times TT, increases in both breathing frequency and tidal volume were significant. At these stimulus intensities, the increases in ventilation were accompanied by approximately equal increases in the activity of the diaphragm, parasternal, and alae nasi muscles. The increase in genioglossus activity was much greater than that of the other inspiratory muscles. Phrenic nerve stimulation also elicited inhomogeneous activation of the expiratory muscles. The transversus abdominis activity increased significantly at intensities from 10 to 30 times TT, whereas the activity of the triangularis sterni remained unchanged. The high stimulation intensities required suggest that the activation of afferent fiber groups III and IV is involved in the response. We conclude that thin-fiber phrenic afferent activation exerts a nonuniform effect on the upper airway, rib cage, and abdominal muscles and may play a role in the control of respiratory muscle recruitment.  相似文献   

18.
The changes in thoracic and abdominal pressure that generate vomiting are produced by coordinated action of the major respiratory muscles. During vomiting, the diaphragm and external intercostal (inspiratory) muscles co-contract with abdominal (expiratory) muscles in a series of bursts of activity that culminates in expulsion. Internal intercostal (expiratory) muscles contract out of phase with these muscles during retching and are inactive during expulsion. The periesophageal portion of the diaphragm relaxes during expulsion, presumably facilitating rostral movement of gastric contents. Recent studies have begun to examine to what extent medullary respiratory neurons are involved in the control of these muscles during vomiting. Bulbospinal expiratory neurons in the ventral respiratory group caudal to the obex discharge at the appropriate time during (fictive) vomiting to activate either abdominal or internal intercostal motoneurons. The pathways that drive phrenic and external intercostal motoneurons during vomiting have yet to be identified. Most bulbospinal inspiratory neurons in the dorsal and ventral respiratory groups do not have the appropriate response pattern to initiate activation of these motoneurons during (fictive) vomiting. Relaxation of the periesophageal diaphragm during vomiting could be brought about, at least in part, by reduced firing of bulbospinal inspiratory neurons.  相似文献   

19.
The asymmetrical reactions of respiratory neurons of the right and left halves of the respiratory center and varied changes in bioelectrical activity of external intercostal muscles on both sides of the chest were discovered in experiments on anesthetized cats in response to successive electrical stimulation of the symmetrical cortical areas of the right and left cerebral hemispheres before and after callosotomy. It was demonstrated that callosotomy increased on both sides of the respiratory center the quantity of neurons responsive to ipsilateral cortical stimulation and determined the character of the asymmetrical reactions of right and left respiratory neurons and intercostal muscles. On the basis of the data obtained it is concluded that the corpus callosum contributes to the functional integration of both halves of the respiratory center.  相似文献   

20.
Chest wall motion during epidural anesthesia in dogs   总被引:3,自引:0,他引:3  
To determine the relative contribution of rib cage and abdominal muscles to expiratory muscle activity during quiet breathing, we used lumbar epidural anesthesia in six pentobarbital sodium-anesthetized dogs lying supine to paralyze the abdominal muscles while leaving rib cage muscle motor function substantially intact. A high-speed X-ray scanner (Dynamic Spatial Reconstructor) provided three-dimensional images of the thorax. The contribution of expiratory muscle activity to tidal breathing was assessed by a comparison of chest wall configuration during relaxed apnea with that at end expiration. We found that expiratory muscle activity was responsible for approximately half of the changes in thoracic volume during inspiration. Paralysis of the abdominal muscles had little effect on the pattern of breathing, including the contribution of expiratory muscle activity to tidal breathing, in most dogs. We conclude that, although there is consistent phasic expiratory electrical activity in both the rib cage and the abdominal muscles of pentobarbital-anesthetized dogs lying supine, the muscles of the rib cage are mechanically the most important expiratory muscles during quiet breathing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号