首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by alpha-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2'-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of alpha-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain.  相似文献   

2.
3.
Yeast Rnt1p is a member of the double-stranded RNA (dsRNA) specific RNase III family of endoribonucleases involved in RNA processing and RNA interference (RNAi). Unlike other RNase III enzymes, which recognize a variety of RNA duplexes, Rnt1p cleaves specifically RNA stems capped with the conserved AGNN tetraloop. This unusual substrate specificity challenges the established dogma for substrate selection by RNase III and questions the dsRNA contribution to recognition by Rnt1p. Here we show that the dsRNA sequence adjacent to the tetraloop regulates Rnt1p cleavage by interfering with RNA binding. In context, sequences surrounding the cleavage site directly influence the cleavage efficiency. Introduction of sequences that stabilize the RNA helix enhanced binding while reducing the turnover rate indicating that, unlike the tetraloop, Rnt1p binding to the dsRNA helix may become rate-limiting. These results suggest that Rnt1p activity is strictly regulated by a combination of primary and tertiary structural elements allowing a substrate-specific binding and cleavage efficiency.  相似文献   

4.
RNase III enzymes form a conserved family of proteins that specifically cleave double-stranded (dsRNA). These proteins are involved in a variety of cellular functions, including the processing of many non-coding RNAs, mRNA decay, and RNA interference. Yeast RNase III (Rnt1p) selects its substrate by recognizing the structure generated by a conserved NGNN tetraloop (G2-loop). Mutations of the invariant guanosine stringently inhibit binding and cleavage of all known Rnt1p substrates. Surprisingly, we have found that the 5' end of small nucleolar RNA 48 is processed by Rnt1p in the absence of a G2-loop. Instead, biochemical and structural analyses revealed that cleavage, in this case, is directed by a hairpin capped with an AAGU tetraloop, with a preferred adenosine in the first position (A1-loop). Chemical probing indicated that A1-loops adopt a distinct structure that varies at the 3' end where Rnt1p interacts with G2-loops. Consistently, chemical footprinting and chemical interference assays indicate that Rnt1p binds to G2 and A1-loops using different sets of nucleotides. Also, cleavage and binding assays showed that the N-terminal domain of Rnt1p aids selection of A1-capped hairpins. Together, the results suggest that Rnt1p recognizes at least two distinct classes of tetraloops using flexible protein RNA interactions. This underscores the capacity of double-stranded RNA binding proteins to use several recognition motifs for substrate identification.  相似文献   

5.
RNases III are a family of double-stranded RNA (dsRNA) endoribonucleases involved in the processing and decay of a large number of cellular RNAs as well as in RNA interference. The dsRNA substrates of Saccharomyces cerevisiae RNase III (Rnt1p) are capped by tetraloops with the consensus sequence AGNN, which act as the primary docking site for the RNase. We have solved the solution structures of two RNA hairpins capped by AGNN tetraloops, AGAA and AGUU, using NMR spectroscopy. Both tetraloops have the same overall structure, in which the backbone turn occurs on the 3' side of the syn G residue in the loop, with the first A and G in a 5' stack and the last two residues in a 3' stack. A non-bridging phosphate oxygen and the universal G which are essential for Rnt1p binding are strongly exposed. The compared biochemical and structural analysis of various tetraloop sequences defines a novel family of RNA tetraloop fold with the consensus (U/A)GNN and implicates this conserved structure as the primary determinant for specific recognition of Rnt1p substrates.  相似文献   

6.
RNase III enzymes are a highly conserved family of proteins that specifically cleave double-stranded RNA (dsRNA). These proteins are involved in a variety of cellular functions, including the processing of many non-coding RNAs, mRNA decay, and RNA interference. In yeast Rnt1p, a dsRNA-binding domain (dsRBD) recognizes its substrate by interacting with stems capped with conserved AGNN tetraloops. The enzyme uses the tetraloop to cut 14nt to 16nt away into the stem in a ruler-like mechanism. The solution structure of Rnt1p dsRBD complexed to one of its small nucleolar (sno) RNA substrate revealed non-sequence-specific contacts with the sugar-phosphate backbone in the minor groove of the AGNN fold and the two non-conserved tetraloop nucleotides. Recently, a new form of Rnt1p substrates lacking the conserved AGNN sequence but instead harboring an AAGU tetraloop was found at the 5' end of snoRNA 48 precursor. Here, we report the solution structure of this hairpin capped with an AAGU tetraloop. Some of the stacking interactions and the position of the turn in the sugar-phosphate backbone are similar to the one observed in the AGNN loop structure; however, the AAGU sequence adopts a different conformation. The most striking difference was found at the 3' end of the loop where Rnt1p interacts with AGNN substrates. The last nucleotide is extruded from the AAGU tetraloop structure in contrast to the compact AGNN fold. The AAGU hairpin structure suggests that Rnt1p recognizes substrates with different tetraloop structures, indicating that the structural repertoire specifically recognized by Rnt1p is larger than previously anticipated.  相似文献   

7.
Rnt1p, the yeast orthologue of RNase III, cleaves rRNAs, snRNAs and snoRNAs at a stem capped with conserved AGNN tetraloop. Here we show that 9 bp long stems ending with AGAA or AGUC tetraloops bind to Rnt1p and direct specific but sequence-independent RNA cleavage when provided with stems longer than 13 bp. The solution structures of these two tetraloops reveal a common fold for the terminal loop stabilized by non-canonical A-A or A-C pairs and extensive base stacking. The conserved nucleotides are stacked at the 5' side of the loop, exposing their Watson-Crick and Hoogsteen faces for recognition by Rnt1p. These results indicate that yeast RNase III recognizes the fold of a conserved single-stranded tetraloop to direct specific dsRNA cleavage.  相似文献   

8.
Bacterial double-stranded RNA-specific RNase III recognizes the A-form of an RNA helix with little sequence specificity. In contrast, baker yeast RNase III (Rnt1p) selectively recognizes NGNN tetraloops even when they are attached to a B-form DNA helix. To comprehend the general mechanism of RNase III substrate recognition, we mapped the Rnt1p binding signal and directly compared its substrate specificity to that of both Escherichia coli RNase III and fission yeast RNase III (PacI). Rnt1p bound but did not cleave long RNA duplexes without NGNN tetraloops, whereas RNase III indiscriminately cleaved all RNA duplexes. PacI cleaved RNA duplexes with some preferences for NGNN-capped RNA stems under physiological conditions. Hydroxyl radical footprints indicate that Rnt1p specifically interacts with the NGNN tetraloop and its surrounding nucleotides. In contrast, Rnt1p interaction with GAAA-capped hairpins was weak and largely unspecific. Certain duality of substrate recognition was exhibited by PacI but not by bacterial RNase III. E. coli RNase III recognized RNA duplexes longer than 11 bp with little specificity, and no specific features were required for cleavage. On the other hand, PacI cleaved long, but not short, RNA duplexes with little sequence specificity. PacI cleavage of RNA stems shorter than 27 bp was dependent on the presence of an UU-UC internal loop two nucleotides upstream of the cleavage site. These observations suggest that yeast RNase IIIs have two recognition mechanisms, one that uses specific structural features and another that recognizes general features of the A-form RNA helix.  相似文献   

9.
dsRBDs often bind dsRNAs with some specificity, yet the basis for this is poorly understood. Rnt1p, the major RNase III in Saccharomyces cerevisiae, cleaves RNA substrates containing hairpins capped by A/uGNN tetraloops, using its dsRBD to recognize a conserved tetraloop fold. However, the identification of a Rnt1p substrate with an AAGU tetraloop raised the question of whether Rnt1p binds to this noncanonical substrate differently than to A/uGNN tetraloops. The solution structure of Rnt1p dsRBD bound to an AAGU-capped hairpin reveals that the tetraloop undergoes a structural rearrangement upon binding to Rnt1p dsRBD to adopt a backbone conformation that is essentially the same as the AGAA tetraloop, and indicates that a conserved recognition mode is used for all Rnt1p substrates. Comparison of free and RNA-bound Rnt1p dsRBD reveals that tetraloop-specific binding requires a conformational change in helix α1. Our findings provide a unified model of binding site selection by this dsRBD.  相似文献   

10.
Members of the double-stranded RNA (dsRNA) specific RNase III family are known to use a conserved dsRNA-binding domain (dsRBD) to distinguish RNA A-form helices from DNA B-form ones, however, the basis of this selectivity and its effect on cleavage specificity remain unknown. Here, we directly examine the molecular requirements for dsRNA recognition and cleavage by the budding yeast RNase III (Rnt1p), and compare it to both bacterial RNase III and fission yeast RNase III (Pac1). We synthesized substrates with either chemically modified nucleotides near the cleavage sites, or with different DNA/RNA combinations, and investigated their binding and cleavage by Rnt1p. Substitution for the ribonucleotide vicinal to the scissile phosphodiester linkage with 2'-deoxy-2'-fluoro-beta-d-ribose (2' F-RNA), a deoxyribonucleotide, or a 2'-O-methylribonucleotide permitted cleavage by Rnt1p, while the introduction of a 2', 5'-phosphodiester linkage permitted binding, but not cleavage. This indicates that the position of the phosphodiester link with respect to the nuclease domain, and not the 2'-OH group, is critical for cleavage by Rnt1p. Surprisingly, Rnt1p bound to a DNA helix capped with an NGNN tetraribonucleotide loop indicating that the binding of at least one member of the RNase III family is not restricted to RNA. The results also suggest that the dsRBD may accommodate B-form DNA duplexes. Interestingly, Rnt1p, but not Pac1 nor bacterial RNase III, cleaved the DNA strand of a DNA/RNA hybrid, indicating that A-form RNA helix is not essential for cleavage by Rnt1p. In contrast, RNA/DNA hybrids bound to, but were not cleaved by Rnt1p, underscoring the critical role for the nucleotide located at 3' end of the tetraloop and suggesting an asymmetrical mode of substrate recognition. In cell extracts, the native enzyme effectively cleaved the DNA/RNA hybrid, indicating much broader Rnt1p substrate specificity than previously thought. The discovery of this novel RNA-dependent deoxyribonuclease activity has potential implications in devising new antiviral strategies that target actively transcribed DNA.  相似文献   

11.
Members of the double-stranded RNA-specific ribonuclease III (RNase III) family were shown to affect cell division and chromosome segregation, presumably through an RNA interference-dependent mechanism. Here, we show that in Saccharomyces cerevisiae, where the RNA interference machinery is not conserved, an orthologue of RNase III (Rnt1p) is required for progression of the cell cycle and nuclear division. The deletion of Rnt1p delayed cells in both G1 and G2/M phases of the cell cycle. Nuclear division and positioning at the bud neck were also impaired in Deltarnt1 cells. The cell cycle defects were restored by the expression of catalytically inactive Rnt1p, indicating that RNA cleavage is not essential for cell cycle progression. Rnt1p was found to exit from the nucleolus to the nucleoplasm in the G2/M phase, and perturbation of its localization pattern delayed the progression of cell division. A single mutation in the Rnt1p N-terminal domain prevented its accumulation in the nucleoplasm and slowed exit from mitosis without any detectable effects on RNA processing. Together, the data reveal a new role for a class II RNase III in the cell cycle and suggest that at least some members of the RNase III family possess catalysis-independent functions.  相似文献   

12.
Yeast Rnt1 is a member of the double-stranded RNA (dsRNA)-specific RNase III family identified by conserved dsRNA binding (dsRBD) and nuclease domains. Comparative sequence analyses have revealed an additional N-terminal domain unique to the eukaryotic homologues of RNase III. The deletion of this domain from Rnt1 slowed growth and led to mild accumulation of unprocessed 25S pre-rRNA. In vitro, deletion of the N-terminal domain reduced the rate of RNA cleavage under physiological salt concentration. Size exclusion chromatography and cross-linking assays indicated that the N-terminal domain and the dsRBD self-interact to stabilize the Rnt1 homodimer. In addition, an interaction between the N-terminal domain and the dsRBD was identified by a two-hybrid assay. The results suggest that the eukaryotic N-terminal domain of Rnt1 ensures efficient dsRNA cleavage by mediating the assembly of optimum Rnt1-RNA ribonucleoprotein complex.  相似文献   

13.
Rnt1 endoribonuclease, the yeast homolog of RNAse III, plays an important role in the maturation of a diverse set of RNAs. The enzymatic activity requires a conserved catalytic domain, while RNA binding requires the double-stranded RNA-binding domain (dsRBD) at the C-terminus of the protein. While bacterial RNAse III enzymes cleave double-stranded RNA, Rnt1p specifically cleaves RNAs that possess short irregular stem-loops containing 12–14 base pairs interrupted by internal loops and bulges and capped by conserved AGNN tetraloops. Consistent with this substrate specificity, the isolated Rnt1p dsRBD and the 30–40 amino acids that follow bind to AGNN-containing stem-loops preferentially in vitro. In order to understand how Rnt1p recognizes its cognate processing sites, we have defined its minimal RNA-binding domain and determined its structure by solution NMR spectroscopy and X-ray crystallography. We observe a new carboxy-terminal helix following a canonical dsRBD structure. Removal of this helix reduces binding to Rnt1p substrates. The results suggest that this helix allows the Rnt1p dsRBD to bind to short RNA stem-loops by modulating the conformation of helix α1, a key RNA-recognition element of the dsRBD.  相似文献   

14.
In bakers' yeast, in vivo telomerase activity requires a ribonucleoprotein (RNP) complex with at least four associated proteins (Est2p, Est1p, Est3p, and Cdc13p) and one RNA species (Tlc1). The function of telomerase in maintaining chromosome ends, called telomeres, is tightly regulated and linked to the cell cycle. However, the mechanisms that regulate the expression of individual components of telomerase are poorly understood. Here we report that yeast RNase III (Rnt1p), a double-stranded RNA-specific endoribonuclease, regulates the expression of telomerase subunits and is required for maintaining normal telomere length. Deletion or inactivation of RNT1 induced the expression of Est1, Est2, Est3, and Tlc1 RNAs and increased telomerase activity, leading to elongation of telomeric repeat tracts. In silico analysis of the different RNAs coding for the telomerase subunits revealed a canonical Rnt1p cleavage site near the 3' end of Est1 mRNA. This predicted structure was cleaved by Rnt1p and its disruption abolished cleavage in vitro. Mutation of the Rnt1p cleavage signal in vivo impaired the cell cycle-dependent degradation of Est1 mRNA without affecting its steady-state level. These results reveal a new mechanism that influences telomeres length by controlling the expression of the telomerase subunits.  相似文献   

15.
16.
Nagel R  Ares M 《RNA (New York, N.Y.)》2000,6(8):1142-1156
Rnt1p is an RNase III homolog from budding yeast, required for processing snRNAs, snoRNAs, and rRNA. Numerous Rnt1p RNA substrates share potential to form a duplex structure with a terminal four-base loop with the sequence AGNN. Using a synthetic RNA modeled after the 25S rRNA 3' ETS cleavage site we find that the AGNN loop is an important determinant of substrate selectivity. When this loop sequence is altered, the rate of Rnt1p cleavage is reduced. The reduction in cleavage rate can be attributed to reduced binding of the mutant substrate as measured by a gel-shift assay. Deletion of the nonconserved N-terminal domain of Rnt1p does not affect cleavage site choice or the ability of the enzyme to distinguish substrates that contain the AGNN loop, indicating that this region is not required for selective cleavage. Strikingly, a recombinant fragment of Rnt1p containing little more than the dsRBD is able to discriminate between wild-type and mutant loop sequences in a binding assay. We propose that a major determinant of AGNN loop recognition by Rnt1p is present in its dsRBD.  相似文献   

17.
Dicer is a member of the ribonuclease III enzyme family and processes double‐stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non‐canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double‐stranded RNA‐binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA‐binding surface. The second dsRNA binding domain at C‐terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem‐loop structure of the RNA substrate, suggesting the possibility that stem‐loop RNA‐guided gene silencing pathway exists in budding yeast.  相似文献   

18.
Lavoie M  Abou Elela S 《Biochemistry》2008,47(33):8514-8526
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.  相似文献   

19.
Ribonuclease III (RNase III) enzymes occur ubiquitously in biology and are responsible for processing RNA precursors into functional RNAs that participate in protein synthesis, RNA interference and a range of other cellular activities. Members of the RNase III enzyme family, including Escherichia coli RNase III, Rnt1, Dicer and Drosha, share the ability to recognize and cleave double-stranded RNA (dsRNA), typically at specific positions or sequences. Recent biochemical and structural data have shed new light on how RNase III enzymes catalyze dsRNA hydrolysis and how substrate specificity is achieved. A major theme emerging from these studies is that accessory domains present in different RNase III enzymes are the key determinants of substrate selectivity, which in turn dictates the specialized biological function of each type of RNase III protein.  相似文献   

20.
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号