首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between proliferation and differentiation in Dictyostelium discoideum Ax-2 was analyzed with reference to the cell-cycle position at the onset of starvation, using cells synchronized by temperature shift (11.5 degrees C-22.0 degrees C). To examine how far Ax-2 cells at any particular phase of the cell cycle are able to progress through the cycle in response to nutritional deprivation, we measured temporal changes in cell number and nuclearity after starvation. Nuclear DNA synthesis in synchronously developing cells was also monitored by pulse-labeling with [methyl-3H]thymidine. Increase in cell number and subsequent DNA synthesis occurred in cells just before mitosis (referred to as T0.5 cells and T1 cells; 0.5 h and 1 h after the shift-up from 11.5 degrees C to 22.0 degrees C respectively), but not in T3, T5, or T7 cells. When T1 cells were incubated for 6 h in the absence of external nutrients, they (T1 + 6 cells) exhibited developmental features similar to T7 cells, which most rapidly acquired chemotactic sensitivity to 3',5'-cyclic adenosine monophosphate (cAMP) and EDTA-resistant cohesiveness after starvation. Thus, it is quite likely that Ax-2 cells may progress through the cell cycle to a particular point (possibly the cell-cycle position of T7 cells), irrespective of the presence or absence of nutrients, and enter the differentiation phase from this point under conditions of nutritional deprivation. There was no difference in the ratio of prestalk to prespore cells in migratory pseudoplasmodia derived from cells that had been starved at other cell-cycle positions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract. As demonstrated previously, the transition of starving Dictyostelium cells from growth to differentiation phase occurs at a particular position (putative shift point; PS-point) in G2-phase of the cell cycle of Dictyostelium discoideum Ax-2. In this study we examined what proteins are phosphorylated or dephosphorylated at the onset of starvation, with special emphasis on changes of phosphoproteins near the PS-point. When AX-2 cells at any particular phase of the cell cycle were pulse-labeled with inorganic 32P (32Pi) in the presence or absence of nutrients, it was found that 101 kDa and 90 kDa phosphoproteins exhibit specific changes around the PS-point. From the chase-experiments of 32P-labeled cells, the 101 kDa and 90 kDa proteins were found to fail to be phosphorylated at the PS-point under starvation conditions. The protein phosphatase inhibitors such as okadaic acid and calyculin A inhibited completely entry of starving Ax-2 cells to differentiation, and also blocked perfectly dephosphorylation of 32 kDa protein. Taken together it is likely that dephosphorylation of 32 kDa protein as well as low phosphorylation levels of 101 kDa and 90 kDa proteins may be required for the phase-shift of Ax-2 cells from growth to differentiation. Subcellular fractionation showed the 101 kDa phosphoprotein to be located in cytoplasm, while parts, at least, of the 90 kDa and 32 kDa phosproproteins were in the nucleus. In addition, the results of cellulose thin-layer electrophoresis of digested 101 kDa and 90 kDa phosphoproteins show that in both proteins only serine residues are phosphorylated. The significance of phosphorylation states of 101 kDa, 90 kDa, and 32 kDa proteins is discussed in relation to a breakaway of cells from proliferation to differentiation.  相似文献   

3.
Using synchronized Dictyostelium discoideum Ax-2 cells and the differential display method, a mitochondrial gene cluster (referred to as differentiation-associated gene 3; dia3) was isolated as one of the genes expressed specifically during the transition of Ax-2 cells from growth to differentiation. The dia3 gene encodes for a mitochondrial protein cluster (NADH dehydrogenase (NAD) subunit 11, 5, ribosomal protein S4 (RPS4), RPS2, and NAD4L). Northern blot analysis using nonsynchronized Ax-2 cells has shown that the dia3 RNA of about 8 kb is scarcely expressed during the vegetative growth phase, and the maximal expression was attained at 2 h after starvation. To analyze the gene function of dia3, we tried inactivation of rps4 by means of homologous recombination and obtained several transformed clones showing mitochondrial DNA heteroplasmy. The transformed cells grew normally in nutrient medium, but their development after starvation was greatly impaired, thus resulting in the failure of many cells to differentiate. In this connection, the cAMP receptor 1 (car1) expression, which is one of the earliest markers of differentiation, was found to be markedly reduced in the rps4-inactivated cells.  相似文献   

4.
In Dictyostelium discoideum Ax-2 cells, a specific checkpoint (PS point) from which cells enter the differentiation phase in response to starvation has been specified in the cell cycle. Using the differential display method, we isolated a novel gene, dia1 (differentiation-associated gene 1), that is specifically expressed in cells differentiating from the PS point. The dia1 mRNA has an open reading frame of 1,368 bp and is deduced to code for a 48.6 kDa protein (DIA1). The DIA1 protein is highly serine-rich and the serine residues are predominantly located in the C-terminal region. After the PSORT II search, the protein is predicted to be GPI-anchored at the plasma membrane. Unexpectedly, dia1 overexpression rather impaired the progression of differentiation, possibly coupled with the reduced expression of early genes such as cAMP receptor1 (car1). The inhibitory effect of dia1 expression on early differentiation was almost completely nullified by externally applied cAMP pulses. In contrast to dia1 overexpression, antisense RNA-mediated dia1 inactivation was found to enhance the initial step of cell differentiation, as exemplified by precocious expression of car1 and other early genes. We discuss the unique structure and function of DIA1 in relation to the cooperative development of cells during the establishment of multicellular organization.  相似文献   

5.
Previous studies have shown that the cell-cycle phase at the onset of starvation is a naturally occurring variable that is closely involved in the subsequent sorting and differentiation of cells during Dictyostelium development. Here the cell-cycle progression during the development of D. discoideum Ax-2 cells and its relation to the subsequent cell-sorting were analyzed in detail using synchronized cells and their pulse-labeling by 5'-bromodeoxyuridine (BrdU). Measurements of cell number and nuclearity provided evidence that about 80% of cells progressed their cell-cycle after formation of multicellular structures (mounds). Many cells (T7 cells) starved at mid–late G2-phase (just before the PS-point from which cells initiate development when starved) progressed to the cell-cycle after mound formation. In contrast, a less amount of cells (T1 cells) starved at late G2-phase (just after the PS-point) progressed through the cell-cycle after mound formation. The significance of cell-cycle progression presented here is discussed, with reference to cell differentiation and pattern formation.  相似文献   

6.
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.  相似文献   

7.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

8.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G1/G0 growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1α,25-dihydroxyvitamin D3 and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G1/G0 growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

9.
Metabotropic glutamate receptors (mGluRs) are a class of G-protein-coupled receptors that possess a seven transmembrane region involved in the modulation of excitatory synaptic transmission in the nervous system. mGluR orthologs have been identified in Drosophila, Caenorhabditis elegans, and higher organisms. Drosophila possesses two mGluR genes, DmGluRA and DmXR. We screened the Dictyostelium genome data base using the ligand binding domain of rat mGluR1 as bait, and identified a new receptor, DdmGluPR, belonging to the mGluR family. Similar to Drosophila DmXR, the residues of mGluRs involved in the binding of the alpha-carboxylic and alpha-amino groups of glutamate were well conserved in DdmGluPR, but the residues interacting with the gamma-carboxylic group of glutamate were not. The phylogenetic analysis suggests that DdmGluPR diverged after the mGluR family-GABA(B) receptors split but before mGluR family divergence. DdmGluPR mRNA was expressed in vegetative cells and throughout starvation-induced development, but the level of the expression was relatively high until 4 h after starvation. DdmGluPR was localized to the plasma membrane of axenically grown Ax-2 cells expressed as a green fluorescent protein fusion protein. DdmGluPR-null cells grew faster at high cell density and reached higher densities than wild-type cells. DdmGluPR-null cells exhibited delayed aggregates formation upon starvation and impaired chemotaxis toward cAMP. Although expressions of cAR1 and aca, cAMP-signaling components, were rapidly induced and peaked at 2-4 h in wild-type cells, DdmGluPR-null cells displayed sustained and peaked at 8 h of the expressions of these genes. Our findings suggest the involvement of DdmGluPR in the early development of Dictyostelium discoideum.  相似文献   

10.
11.
Abstract The novel gene dia2 (differentiation-associated gene 2) was originally isolated as a gene expressed specifically in response to initial differentiation of Dictyostelium discoideum Ax-2 cells. Using dia2AS cells in which the dia2 expression was inactivated by the antisense RNA method, DIA2 protein was found to be required for cAMP signaling during cell aggregation. During late development, the DIA2 protein changed its location from the endoplasmic reticulum (ER) to prespore-specific vacuoles (PSVs) that are specifically present in prespore cells of the slug. In differentiating prestalk cells, however, DIA2 was found to be nearly lost from the cells. Importantly, exocytosis of PSVs from prespore cells and the subsequent spore differentiation were almost completely impaired in dia2AS cells. In addition, spore induction by externally applied 8-bromo cAMP was significantly suppressed in dia2AS cells. Taken together, these results strongly suggested that DIA2 might be closely involved in cAMP signaling and spore differentiation as well as in the initiation of differentiation during Dictyostelium development.  相似文献   

12.
Upon deprivation of nutrients, Dictyostelium discoideum Ax-2 cells arrest proliferation and initiate a metamorphosed developmental program including induction of altered gene expressions which are necessary for differentiation. In Ax-2 cells, we found out a member of Hsp90 family usually contained in the endoplasmic reticulum (ER), Dd-GRP94 (Dictyostelium discoideum glucose-regulated protein 94). In general, GRP94 are induced either by glucose-depletion or by depletion of Ca(2+) in intracellular Ca(2+) stores. Unexpectedly, however, the expression of Dd-grp94 was greatly reduced within 60 min of starvation. Dd-grp94-overexpressing cells (GRP94(OE) cells) collected without forming distinct aggregation streams, and never formed normal fruiting bodies. Also, prespore differentiation as well as maturation into spores and stalk cells were particularly impaired in the GRP94(OE) cells. Thus Dd-GRP94 seems to be crucial in late differentiation as well as in starvation response.  相似文献   

13.

Background

Tumor-stroma reaction is associated with activation of fibroblasts. Nemosis is a novel type of fibroblast activation. It leads to an increased production of growth factors and proinflammatory and proteolytic proteins, while at the same time cytoskeletal proteins are degraded. Here we used paired normal skin fibroblasts and cancer-associated fibroblasts (CAF) and primary and recurrent oral squamous cell carcinoma (SCC) cells to study the nemosis response.

Principal Findings

Fibroblast nemosis was analyzed by protein and gene expression and the paracrine regulation with colony formation assay. One of the normal fibroblast strains, FB-43, upregulated COX-2 in nemosis, but FB-74 cells did not. In contrast, CAF-74 spheroids expressed COX-2 but CAF-43 cells did not. Alpha-SMA protein was expressed in both CAF strains and in FB-74 cells, but not in FB-43 fibroblasts. Its mRNA levels were downregulated in nemosis, but the CAFs started to regain the expression. FSP1 mRNA was downregulated in normal fibroblasts and CAF-74 cells, but not in CAF-43 fibroblasts. Serine protease FAP was upregulated in all fibroblasts, more so in nemotic CAFs. VEGF, HGF/SF and FGF7 mRNA levels were upregulated to variable degree in nemosis. CAFs increased the colony formation of primary tumor cell lines UT-SCC-43A and UT-SCC-74A, but normal fibroblasts inhibited the anchorage-independent growth of recurrent UT-SCC-43B and UT-SCC-74B cells.

Conclusions

Nemosis response, as observed by COX-2 and growth factor induction, and expression of CAF markers α-SMA, FSP1 and FAP, varies between fibroblast populations. The expression of CAF markers differs between normal fibroblasts and CAFs in nemosis. These results emphasize the heterogeneity of fibroblasts and the evolving tumor-promoting properties of CAFs.  相似文献   

14.
Phorbol esters cause an apparent differentiation of human T leukemic cell lines. It was shown previously that TPA induces the expression of the interleukin 2 (IL 2) receptor and the T3 complex on some T cell lines, including CCRF-CEM. We demonstrate that expression of the IL 2 receptor correlated with an induction of the 3.5 and 1.5 kb IL 2 receptor mRNA. In addition, the TPA-induced expression of the T3 polypeptides was found to be accompanied by induction of a putative T cell antigen receptor heterodimer on CEM cells. This was demonstrated by the co-precipitation of the T cell receptor with T3 from digitonin-solubilized cells. The cells expressed high levels of T3 delta- and T cell receptor beta-chain mRNA in the absence of TPA. The effect of TPA was to cause a rapid accumulation of T cell receptor alpha-chain mRNA. This suggested that the alpha-chain gene was rearranged before TPA induction and that expression of the T cell receptor/T3 complex on the cell surface was regulated by the level of alpha-chain expression. It was also shown that cloned sublines of CEM cells which expressed different T cell antigen phenotypes differed in their response to TPA.  相似文献   

15.
Primary cultures of human myogenic stem cells (satellite cells) mimic myogenic differentiation. During this process, the expression of the components of the plasminogen activation system underwent modulation. Activities and mRNA levels of tissue-type and urokinase-type plasminogen activator were increased in a reproducible pattern during differentiation. A modulation of the mRNA level of PAI-2 was also observed. Human satellite cells expressed a urokinase receptor and also the mRNA level of this component underwent modulation. With the exception of PAI-1 mRNA, the level of all mRNAs increased from Day 4 to Day 8, i.e., just before myoblasts fusion, and then remained high at later stages. The modulation of the plasminogen activating activity indicates that this system is directly involved in the fusion process of myogenic differentiation.  相似文献   

16.
The implication of histone H1 kinase activity for the G2/M transition during the cell cycle was investigated usingDictyostelium discoideum Ax-2. Histone H1 kinase with its activity was purified from cell extracts by the use of p13suc1 affinity gel. In the vegetative cell cycle, the activity of histone H1 kinase including Cdc2 kinase was found using synchronized Ax-2 cells to be highest just before the entry into mitosis. The activity also was markedly enhanced just prior to the M phase from which developing cells (possibly prespore cells) reinitiate their cell cycle at the mound-tipped aggregate stage. These results strongly suggest the importance of Cdc2 kinase activity in the G2 to M phase transition during the cell cycle, as the case for other eukaryotic cells.  相似文献   

17.
The cell cycle of multicellular organisms must be tightly coordinated with organogenesis and differentiation. Experiments done in vitro have identified chromatin assembly factor 1 (CAF-1) as a protein complex promoting chromatin assembly during DNA replication, but the in vivo role of CAF-1 in multicellular animals is still poorly understood. Here we describe the characterization of a zebrafish mutant disrupting CAF-1b activity, and show that it leads to defective cell cycle progression and differentiation in several organs, including the retina, optic tectum, pectoral fins, and head skeleton. Retinal precursor cells mutant for caf-1b arrest in S phase and undergo p53-mediated apoptosis. While p53 deficiency is able to rescue apoptosis in caf-1b mutants, it fails to rescue differentiation, indicating that CAF-1 activity is essential for differentiation in these organs. In addition, we also show that regulation of caf-1b expression in the retina depends on a group of genes that regulate the switch from proliferation to differentiation.  相似文献   

18.
Dd-TRAP1 is a Dictyostelium homologue of TRAP-1, a human protein that binds to the type 1 tumor necrosis factor (TNF) receptor. TRAP-1 has a putative mitochondrial localization sequence and shows significant homology to members of the HSP90 family. Although TRAP-1 is mainly localized to mitochondria in several mammalian cells, in certain tissues it is also localized at specific extramitochondrial sites. In Dictyostelium cells, Dd-TRAP1 is predominantly located in the cell membrane/cortex during growth and just after starvation. Double staining of vegetatively growing cells with the anti-Dd-TRAP1 antibody and TRITC-phalloidin has demonstrated colocalization of Dd-TRAP1 and F-actin at the leading edge of cortical protrusions such as pseudopodes. Coupled with differentiation, however, Dd-TRAP1 located at the cortical region is translocated to mitochondria in spite of the absence of the mitochondrial localization sequence at its N-terminus. The translocation of this protein raises interesting and fundamental questions regarding possible mechanisms by which Dd-TRAP1 is involved in cellular differentiation.  相似文献   

19.
20.
Among the expressed genes associated with the switch-over of Dictyostelium cells from cell proliferation to differentiation, the Calfumirin-1 ( CAF1 ) gene has been shown to be preferentially expressed at the initial step of differentiation, encoding a novel Ca2+-binding protein (Abe & Maeda 1995). To analyze precisely the function of CAF1 , transformants overexpressing the CAF1 mRNA at the vegetative growth phase and also CAF1 -null mutants were prepared, and their developmental features were compared with those of parental wild-type cells. As a result, the CAF1 -overexpression was found to promote cell differentiation, possibly through prompt induction of the cAMP receptor 1 ( CAR1 ) gene expression. In addition, the CAF1 -overexpressing cells were able to differentiate even under low external Ca2+ ([Ca2+]e) conditions around 10−6mol/L at which non-transformed wild-type cells never differentiated. Unexpectedly, however, the CAF1 -null mutant produced by homologous recombination exhibited apparently normal development to form fruiting bodies on non-nutrient agar. These results seem to indicate that CAF1 -overexpression has a stimulatory effect on differentiation, but that the CAF1 protein is not necessarily required for the phase-shift of cells from growth to differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号