首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Stranger BE  Stahl EA  Raj T 《Genetics》2011,187(2):367-383
Enormous progress in mapping complex traits in humans has been made in the last 5 yr. There has been early success for prevalent diseases with complex phenotypes. These studies have demonstrated clearly that, while complex traits differ in their underlying genetic architectures, for many common disorders the predominant pattern is that of many loci, individually with small effects on phenotype. For some traits, loci of large effect have been identified. For almost all complex traits studied in humans, the sum of the identified genetic effects comprises only a portion, generally less than half, of the estimated trait heritability. A variety of hypotheses have been proposed to explain why this might be the case, including untested rare variants, and gene-gene and gene-environment interaction. Effort is currently being directed toward implementation of novel analytic approaches and testing rare variants for association with complex traits using imputed variants from the publicly available 1000 Genomes Project resequencing data and from direct resequencing of clinical samples. Through integration with annotations and functional genomic data as well as by in vitro and in vivo experimentation, mapping studies continue to characterize functional variants associated with complex traits and address fundamental issues such as epistasis and pleiotropy. This review focuses primarily on the ways in which genome-wide association studies (GWASs) have revolutionized the field of human quantitative genetics.  相似文献   

3.
The field of landscape genetics has been evolving rapidly since its emergence in the early 2000s. New applications, techniques and criticisms of techniques appear like clockwork with each new journal issue. The developments are an encouraging, and at times bewildering, sign of progress in an exciting new field of study. However, we suggest that the rapid expansion of landscape genetics has belied important flaws in the development of the field, and we add an air of caution to this breakneck pace of expansion. Specifically, landscape genetic studies often lose sight of the fundamental principles and complex consequences of gene flow, instead favouring simplistic interpretations and broad inferences not necessarily warranted by the data. Here, we describe common pitfalls that characterize such studies, and provide practical guidance to improve landscape genetic investigation, with careful consideration of inferential limits, scale, replication, and the ecological and evolutionary context of spatial genetic patterns. Ultimately, the utility of landscape genetics will depend on translating the relationship between gene flow and landscape features into an understanding of long‐term population outcomes. We hope the perspective presented here will steer landscape genetics down a more scientifically sound and productive path, garnering a field that is as informative in the future as it is popular now.  相似文献   

4.
5.
6.
The passing of Seymour Benzer has inspired various retrospectives on his scientific career, and much attention has been paid to his inauguration of single-gene mutant studies of behavior in the fruitfly Drosophila melanogaster. Studies of genes and behavior actually go back to the beginnings of genetics. The end of the era marked by Benzer's life offers a good opportunity to look back at the origins of the field he influenced so profoundly.  相似文献   

7.
Populations are often composed of more than just randomly mating subpopulations - many organisms from social groups with distinct patterns of mating and dispersal. Such patterns have recieved much attention in behavioral ecology, yet theories of population genetics rarely take social structures into account. Consequently, population geneticists often report high levels of apparent in breeding and concomitantly low efective sizes, even for species that avoid mating between close kin. Recently, a view of gene dynamics has been introduced that takes dispersal and social structure into account. Accounting for social structure in population genetics leads to a different perspective on how genetic variation is partitoned and the rate at which genic diversity is lost in natural populations - a view that is more consistent with observed behaviors for the minimization of inbreeding.  相似文献   

8.
9.
Contributions to the genetics of the China aster   总被引:1,自引:0,他引:1  
F. Wit 《Genetica》1937,19(1-3):1-104
  相似文献   

10.
Chemical probes can be valuable tools for studying protein targets, but addressing concerns about a probe's cellular target or its specificity can be challenging. A reliable strategy is to use a mutation that does not alter a target's function but confers resistance (or sensitizes) to the inhibitor in both cellular and biochemical assays. However, challenges remain in finding such mutations. Here, we discuss structure- and cell-based approaches to identify resistance- and sensitivity-conferring mutations. Further, we describe how resistance-conferring mutations can help with compound design, and the use of saturation mutagenesis to characterize a compound binding site. We highlight how genetic approaches can ensure the proper use of chemical inhibitors to pursue mechanistic studies and test therapeutic hypotheses.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
The field of human genetics is being reshaped by exome and genome sequencing. Several lessons are evident from observing the rapid development of this area over the past 2 years, and these may be instructive with respect to what we should expect from 'next-generation human genetics' in the next few years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号