首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.  相似文献   

2.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

3.
H Bates  B A Bridges 《Biochimie》1991,73(4):485-489
An experimental system was used in which His+ mutations induced by ultraviolet light (UV) arise from non-photo-reversible photoproducts whereas lethality is largely determined by photoreversible photoproducts. By exposing a strain with a deletion through recA to light immediately after UV, it was possible to examine mutagenesis under conditions where survival was not significantly different from 100%. No UV mutagenesis was seen in the absence of RecA protein even though the rest of the SOS system was fully expressed due to the presence of a defective LexA repressor and the active carboxy-terminal fragment of UmuD was present as a result of an engineered plasmid-borne gene. We conclude that RecA protein has a third essential function if UV mutagenesis is to be detected in excision-deficient-bacteria. Another experiment showed that in exerting this function RecA protein does not need activation by pyrimidine dimers elsewhere on the genome, in contrast to its protein-cleavage mediation functions with LexA and UmuD proteins. RecA1730 protein blocked UV mutagenesis unless delayed photoreversal was given showing that the third function of RecA protein is not in the misincorporation step. It is therefore most likely to be in the bypass step where UmuD' and UmuC are postulated to act, although the possibility cannot be excluded that RecA protein is required for some other survival function distinct from translesion synthesis.  相似文献   

4.
A hallmark of the Escherichia coli SOS response is the large increase in mutations caused by translesion synthesis (TLS). TLS requires DNA polymerase V (UmuD'2C) and RecA. Here, we show that pol V and RecA interact by two distinct mechanisms. First, pol V binds to RecA in the absence of DNA and ATP and second, through its UmuD' subunit, requiring DNA and ATP without ATP hydrolysis. TLS occurs in the absence of a RecA nucleoprotein filament but is inhibited in its presence. Therefore, a RecA nucleoprotein filament is unlikely to be required for SOS mutagenesis. Pol V activity is severely diminished in the absence of RecA or in the presence of RecA1730, a mutant defective for pol V mutagenesis in vivo. Pol V activity is strongly enhanced with RecA mutants constitutive for mutagenesis in vivo, suggesting that RecA is an obligate accessory factor that activates pol V for SOS mutagenesis.  相似文献   

5.
Summary The phenotype of the recA1730 mutant is highly dependent on the level of expression of the RecA1730 protein. If the recA1730 gene was expressed from its own promoter, the cells were deficient in recombination and SOS induction. In contrast, when the recA1730 gene was expressed under the control of recAo98, a constitutive operator that increased the RecA1730 concentration 20-fold, cells became proficient in recombination and SOS induction. Likewise, in crude extracts, fivefold more RecA1730 than RecAwt was required to produce full cleavage of LexA protein. The requirement for a high RecA1730 concentration for recombination and LexA cleavage suggests that the recA1730 defect alters a common reaction step. In fact, in vitro data show that the impaired assembly of RecA1730 protein on single-stranded DNA (ssDNA) can account for the mutant phenotype. Purified RecA1730 protein was assayed in vitro for ssDNA binding and ATPase activities. RecA1730, like RecAwt, retained ssDNA equally well on nitrocellulose filters; this activity was specifically inhibited by a monoclonal anti-RecA antibody. However, RecA1730 protein did not form complete filaments on ssDNA, as shown by two observations: (i) most of the protein did not elute with ssDNA during gel filtration; and (ii) binding of RecA1730 to ssDNA did not protect it from being digested by DNaseI. RecA1730 hydrolysed ATP in high salt but was defective in ssDNA-dependent ATP hydrolysis. These results strongly suggest that RecA1730 binds to ATP and ssDNA but does not form normal nucleoprotein filaments.Abbreviations RecAwt RecA wind-type protein - ssDNA singlestranded DNA - dsDNA dmble-stranded DNA  相似文献   

6.
Further studies on theisfA mutation responsible for anti-SOS and antimutagenic activities inEscherichia coli are described. We have previously shown that theisfA mutation inhibits mutagenesis and other SOS-dependent phenomena, possibly by interfering with RecA coprotease activity. TheisfA mutation has now been demonstrated also to suppress mutator activity inE. coli recA730 andrecA730 lexA51(Def) strains that constitutively express RecA coprotease activity. We further show that the antimutator activity of theisfA mutation is related to inhibition of RecA coprotease-dependent processing of UmuD. Expression of UmuD' from plasmid pGW2122 efficiently restores UV-induced mutagenesis in therecA730 isfA strain and partially restores its mutator activity. On the other hand, overproduction of UmuD'C proteins from pGW2123 plasmid markedly enhances UV sensitivity with no restoration of mutability.  相似文献   

7.
The umuDC operon of Escherichia coli, a member of the SOS regulon, is required for SOS mutagenesis. Following the posttranslational processing of UmuD to UmuD' by RecA-mediated cleavage, UmuD' acts in concert with UmuC, RecA, and DNA polymerase III to facilitate the process of translesion synthesis, which results in the introduction of mutations. Constitutive expression of the umuDC operon causes an inhibition of growth at 30 degrees C (cold sensitivity). The umuDC-dependent physiological phenomenon manifested as cold-sensitive growth is shown to differ from SOS mutagenesis in two respects. Intact UmuD, the form inactive in SOS mutagenesis, confers a significantly higher degree of cold sensitivity in combination with UmUC than does UmuD'. In addition, umuDC-mediated cold sensitivity, unlike SOS mutagenesis, does not require recA function. Since the RecA protein mediates the autodigestion of UnmD to UmuD', this finding supports the conclusion that intact UmuD is capable of conferring cold sensitivity in the presence of UmuC. The degree of inhibition of growth at 30 degrees C correlates with the levels of UmuD and UmuC, which are the only two SOS-regulated proteins required to observe cold sensitivity. Analysis of the cellular morphology of strains that exhibit cold sensitivity for growth led to the finding that constitutive expression of the umuDC operon causes a novel form of sulA- and sfiC-independent filamentation at 30 degrees C. This filamentation is observed in a strain constitutively expressing the single, chromosomal copy of umuDC and can be suppressed by overexpression of the ftsQAZ operon.  相似文献   

8.
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD'. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD' protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD'-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD' functions in vivo as well as examined HumD's physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive DeltaumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD', HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD'-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo.  相似文献   

9.
Evidence is presented that recA functions which promote the SOS functions of mutagenesis, LexA protein proteolysis, and lambda cI repressor proteolysis are each genetically separable from the others. This separation was observed in recombination-proficient recA mutants and rec+ (F' recA56) heterodiploids. recA430, recA433, and recA435 mutants and recA+ (F' recA56) heterodiploids were inducible for only one or two of the three functions and defective for mutagenesis. recA80 and recA432 mutants were constitutively activated for two of the three functions in that these mutants did not have to be induced to express the functions. We propose that binding of RecA protein to damaged DNA and subsequent interaction with small inducer molecules gives rise to conformational changes in RecA protein. These changes promote surface-surface interactions with other target proteins, such as cI and LexA proteins. By this model, the recA mutants are likely to have incorrect amino acids substituted as sites in the RecA protein structure which affect surface regions required for protein-protein interactions. The constitutively activated mutants could likewise insert altered amino acids at sites in RecA which are involved in the activation of RecA protein by binding small molecules or polynucleotides which metabolically regulate RecA protein.  相似文献   

10.
Inducible mutagenesis in Escherichia coli requires the direct action of the chromosomally encoded UmuDC proteins or functional homologs found on certain naturally occurring plasmids. Although structurally similar, the five umu-like operons that have been characterized at the molecular level vary in their ability to enhance cellular and phage mutagenesis; of these operons, the mucAB genes from the N-group plasmid pKM101 are the most efficient at promoting mutagenesis. During the mutagenic process, UmuD is posttranslationally processed to an active form, UmuD'. To explain the more potent mutagenic efficiency of mucAB compared with that of umuDC it has been suggested that unlike UmuD, intact MucA is functional for mutagenesis. To examine this possibility, we have overproduced and purified the MucA protein. Although functionally similar to UmuD, MucA was cleaved much more rapidly both in vitro and in vivo than UmuD. In vivo, restoration of mutagenesis functions to normally nonmutable recA430, recA433, recA435, or recA730 delta(umuDC)595::cat strains by either MucA+ or mutant MucA protein correlated with the appearance of the cleavage product, MucA'. These results suggest that most of the differences in mutagenic phenotype exhibited by MucAB and UmuDC correlate with the efficiency of posttranslational processing of MucA and UmuD rather than an inherent activity of the unprocessed proteins.  相似文献   

11.
Mutagenesis by proximity to the recA gene of Escherichia coli   总被引:2,自引:0,他引:2  
Escherichia coli recA (Prtc) strains, which produce protease constitutive RecA proteins in the absence of DNA-damaging treatments, display an increased frequency of spontaneous mutations. These mutations occurred preferentially in the neighborhood of the recA gene. This cis-like mutagenic effect was observed in the recA, rexAB, phoE and bio genes. The localized mutagenesis can be explained by the ease with which RecA(Prtc) proteins are activated to the protease state, which implies that there should be a relatively high concentration of activated RecA protein near the recA gene, where the protein is synthesized. The unusually high frequency of mutation in the recA gene is a novel example of an overactive gene preferentially turning itself down by mutation.  相似文献   

12.
Mutagenesis was demonstrable after delayed photoreversal of UV-irradiated strains carrying a recA deletion indicating that RecA protein is not essential for the misincorporation process that is revealed by delayed photoreversal. Moreover, the data suggest that RecA protein actually depresses misincorporation to varying extents depending on the recA allele. No delayed photoreversal was demonstrable in reA1 or recA56 bacteria unless the lexA102(ind-) allele was also present. It is suggested that the level of these RecA proteins may be lower in the lexA102(ind-) strains thus minimising their depressive effect. Delayed photoreversal mutagenesis in strains carrying the recA441 allele was not affected by either adenine or guanosine plus cytidine, substances which affect the proteolytic activity of RecA441 protein.  相似文献   

13.
The heterotrimeric UmuD'(2)C complex of Escherichia coli has recently been shown to possess intrinsic DNA polymerase activity (DNA pol V) that facilitates error-prone translesion DNA synthesis (SOS mutagenesis). When overexpressed in vivo, UmuD'(2)C also inhibits homologous recombination. In both activities, UmuD'(2)C interacts with RecA nucleoprotein filaments. To examine the biochemical and structural basis of these reactions, we have analyzed the ability of the UmuD'(2)C complex to bind to RecA-ssDNA filaments in vitro. As estimated by a gel retardation assay, binding saturates at a stoichiometry of approximately one complex per two RecA monomers. Visualized by cryo-electron microscopy under these conditions, UmuD'(2)C is seen to bind uniformly along the filaments, such that the complexes are completely submerged in the deep helical groove. This mode of binding would impede access to DNA in a RecA filament, thus explaining the ability of UmuD'(2)C to inhibit homologous recombination. At sub-saturating binding, the distribution of UmuD'(2)C complexes along RecA-ssDNA filaments was characterized by immuno-gold labelling with anti-UmuC antibodies. These data revealed preferential binding at filament ends (most likely, at one end). End-specific binding is consistent with genetic models whereby such binding positions the UmuD'(2)C complex (pol V) appropriately for its role in SOS mutagenesis.  相似文献   

14.
Expression of recA in Deinococcus radiodurans.   总被引:4,自引:2,他引:4       下载免费PDF全文
Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid that requires RecA for replication. To ensure that the cloned S. flexneri recA gene was not inactivated, it was rescued from D. radiodurans and was shown to function normally in E. coli. We conclude that neither D. radiodurans nor S. flexneri RecA is functional in the other species, nor are the kinetics of induction and suppression similar to each other, indicating a difference between these two proteins in their modes of action.  相似文献   

15.
Most damage induced mutagenesis in Escherichia coli is dependent upon the UmuD'(2)C protein complex, which comprises DNA polymerase V (pol V). Biochemical characterization of pol V has been hindered by the fact that the enzyme is notoriously difficult to purify, largely because overproduced UmuC is insoluble. Here, we report a simple and efficient protocol for the rapid purification of milligram quantities of pol V from just 4 L of bacterial culture. Rather than over producing the UmuC protein, it was expressed at low basal levels, while UmuD'(2)C was expressed in trans from a high copy-number plasmid with an inducible promoter. We have also developed strategies to purify the β-clamp and γ-clamp loader free from contaminating polymerases. Using these highly purified proteins, we determined the cofactor requirements for optimal activity of pol V in vitro and found that pol V shows robust activity on an SSB-coated circular DNA template in the presence of the β/γ-complex and a RecA nucleoprotein filament (RecA*) formed in trans. This strong activity was attributed to the unexpectedly high processivity of pol V Mut (UmuD'(2)C · RecA · ATP), which was efficiently recruited to a primer terminus by SSB.  相似文献   

16.
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3''-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3''-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA''2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.  相似文献   

17.
One of the components of the RecA-LexA-controlled SOS response in Escherichia coli cells is an inducible error-prone DNA replication pathway that results in a substantial increase in the mutation rate. It is believed that error-prone DNA synthesis is performed by a multiprotein complex that is formed by UmuC, UmuD', RecA, and probably DNA polymerase III holoenzyme. It is postulated that the formation of such a complex requires specific interactions between these proteins. We have analyzed the specific protein-protein interactions between UmuC, UmuD, and UmuD' fusion proteins, using a Saccharomyces cerevisiae two-hybrid system. In agreement with previous in vitro data, we have shown that UmuD and UmuD' are able to form both homodimers (UmuD-UmuD and UmuD'-UmuD') and a heterodimer (UmuD-UmuD'). Our data show that UmuC fusion protein is capable of interacting exclusively with UmuD' and not with UmuD. Thus, posttranslational processing of UmuD into UmuD' is a critical step in SOS mutagenesis, enabling only the latter protein to interact with UmuC. Our data seem to indicate that the integrity of the entire UmuC sequence is essential for UmuC-UmuD' heterotypic interaction. Finally, in our studies, we used three different UmuC mutant proteins: UmuC25, UmuC36, and UmuC104. We have found that UmuC25 and UmuC36 are not capable of associating with UmuD'. In contrast, UmuC104 protein interacts with UmuD' protein with an efficiency identical to that of the wild-type protein. We postulate that UmuC104 protein might be defective in interaction with another, unknown protein essential for the SOS mutagenesis pathway.  相似文献   

18.
The deficiency in UV mutagenesis in uvrD3 recB21 strains of E. coli is almost completely overcome by constitutive activation of RecA protein and expression of the SOS system (by recA730 or 43 degrees C treated recA441 lexA71). When SOS was expressed but RecA protein not self-activated (recA441 lexA71 at 30 degrees C), uvrD3 recB21 still reduced UV mutagenesis at low doses. The uvrD3 recB21 combination is therefore inhibiting activation of RecA protein. It is suggested that the DNA unwinding activity of the products of the uvrD and recB genes may be involved in generating single-stranded DNA needed to activate RecA protein both for the cleavage of LexA repressor and for a further role in UV mutagenesis.  相似文献   

19.
Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins, UmuD', RecA and ssDNA-binding protein (SSB), has an ability to bypass the lesion with high mutagenicity. This enables reinitiation and extension of DNA replication by DNA polymerase III (Pol III). We studied UV- and MMS-induced mutagenesis of lambdaO(am)8 phage in E. coli 594 sup+ host, unable to replicate the phage DNA, as a possible model for mutagenesis induced in nondividing cells (e.g. somatic cells). We show that in E. coli 594 sup+ cells UV- and MMS-induced mutagenesis of lambdaO(am)8 phage may occur. This mutagenic process requires both the UmuD' and C proteins, albeit a high level of UmuD' and low level of UmuC seem to be necessary and sufficient. We compared UV-induced mutagenesis of lambdaO(am)8 in nonpermissive (594 sup+) and permissive (C600 supE) conditions for phage DNA replication. It appeared that while the mutagenesis of lambdaO(am)8 in 594 sup+ requires the UmuD' and C proteins, which can not be replaced by other SOS-inducible protein(s), in C600 supE their functions may be replaced by other inducible protein(s), possibly DNA polymerase IV (DinB). Mutations induced under nonpermissive conditions for phage DNA replication are resistant to mismatch repair (MMR), while among those induced under permissive conditions, only about 40% are resistant.  相似文献   

20.
The UmuD'C mutagenesis complex accumulates slowly and parsimoniously after a 12 J m−2 UV flash to attain after 45 min a low cell concentration between 15 and 60 complexes. Meanwhile, RecA monomers go up to 72 000 monomers. By contrast, when the UmuD'C complex is constitutively produced at a high concentration, it inhibits recombinational repair and then markedly reduces bacterial survival from DNA damage. We have isolated novel recA mutations that enable RecA to resist UmuD'C recombination inhibition. The mutations, named recA [UmuR], are located on the RecA three-dimensional structure at three sites: (i) the RecA monomer tail domain (four amino acid changes); (ii) the RecA monomer head domain (one amino acid change, which appears to interface with the amino acids in the tail domain); and (iii) in the core of a RecA monomer (one amino acid change). RecA [UmuR] proteins make recombination more efficient in the presence of UmuD'C while SOS mutagenesis is inhibited. The UmuR amino acid changes are located at a head-tail joint between RecA monomers and some are free to possibly interact with UmuD'C at the tip of a RecA polymer. These two RecA structures may constitute possible sites to which the UmuD'C complex might bind, hampering homologous recombination and favouring SOS mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号