首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract: Radiolabeled analogues of neuromedin N have been prepared by acylation of the α, ε1, and ε2 amino groups of [Lys2]neuromedin N (Lys-Lys-Pro-Tyr-Ile-Leu) either with the 125I-labeled Bolton-Hunter reagent or with N -succinimidyl[2,3-3H]propionate. The binding properties of the purified analogues toward newborn mouse brain homogenate or toward membranes of cells transitorily (COS) or permanently (AA1) transfected with the cloned rat brain neurotensin receptor cDNA were evaluated and compared with those of radiolabeled neurotensin. The α-modified analogue of [Lys2]neuromedin N behaves exactly like neurotensin in these binding experiments, whereas the ε1- and ε2-modified analogues selectively recognize the fraction of neurotensin binding sites that is sensitive to GTPγS. The proportion of neurotensin receptors coupled to GTP binding proteins is ∼50% in membranes of newborn mouse brain or of AA1 cells that respond to neurotensin by an increase of the intracellular inositol trisphosphate concentration. By contrast, membranes of transitorily transfected COS cells that do not respond to neurotensin exhibit very low levels of GTP-sensitive receptors labeled with the ε1- or ε2-modified analogues. These radiolabeled peptides offer new tools to selectively detect active neurotensin receptors.  相似文献   

2.
Abstract: Structural elements of the rat μ-opioid receptor important in ligand receptor binding and selectivity were examined using a site-directed mutagenesis approach. Five single amino acid mutations were made, three that altered conserved residues in the μ, δ, and κ receptors (Asn150 to Ala, His297 to Ala, and Tyr326 to Phe) and two designed to test for μ/δ selectivity (Ile198 to Val and Val202 to Ile). Mutation of His297 in transmembrane domain 6 (TM6) resulted in no detectable binding with [3H]DAMGO (3H-labeled d -Ala2, N -Me-Phe4,Gly-ol5-enkephalin), [3H]bremazocine, or [3H]ethylketocyclazocine. Mutation of Asn150 in TM3 produces a three- to 20-fold increase in affinity for the opioid agonists morphine, DAMGO, fentanyl, β-endorphin1–31, JOM-13, deltorphin II, dynorphin1–13, and U50,488, with no change in the binding of antagonists such as naloxone, naltrexone, naltrindole, and nor-binaltorphamine. In contrast, the Tyr326 mutation in TM7 resulted in a decreased affinity for a wide spectrum of μ, δ, and κ agonists and antagonists. Altering Val202 to Ile in TM4 produced no change on ligand affinity, but Ile198 to Val resulted in a four- to fivefold decreased affinity for the μ agonists morphine and DAMGO, with no change in the binding affinities of κ and δ ligands.  相似文献   

3.
Abstract: The μ-opioid receptor has recently been shown to stimulate phosphoinositide-specific phospholipase C via the pertussis toxin-sensitive G16 protein. Given the promiscuous nature of G16 and the high degree of resemblance of signaling properties of the three opioid receptors, both δ- and κ-opioid receptors are likely to activate G16. Interactions of δ- and κ-opioid receptors with G16 were examined by coexpressing the opioid receptors and Gα16 in COS-7 cells. The δ-selective agonist [ d -Pen2, d -Pen5]enkephalin potently stimulated the formation of inositol phosphates in cells coexpressing the δ-opioid receptor and Gα16. The δ-opioid receptor-mediated stimulation of phospholipase C was absolutely dependent on the coexpression of simeter for quality control of blood units and irradiators. 13.   Transfusion 1993 ; 33 : 898 – 901 . [PubMed link] 14.   Butson MJ , Yu PK , Cheung T , et al . Dosimetry of blood irradiation with radiochromic film. Transfus Med 1999 ; 9 : 205 – 8 . [PubMed link] 15.   Nath R , Biggs PJ , Ling CC , et al . AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Med Phys  相似文献   

4.
Abstract: Radioligand binding assays and functional experiments revealed that the SK-N-BE neuroblastoma cell line expresses a similar ratio of μ- and δ-opioid receptors, both negatively coupled to adenylyl cyclase through pertussis toxin-sensitive G proteins. Our findings also indicate that some functional interaction occurred between the two opioid subtypes; in fact, long-term exposure to [ d -Ala2- N -methyl-Phe4-Gly-ol5]enkephalin (DAMGO), a μ-selective agonist, sensitized the functional response of the δ-selective agonist but not vice versa. It is interesting that in acute interaction experiments, we observed a shift to the right of the concentration-effect curve of either DAMGO or [ d -Pen2,5]enkephalin (DPDPE), a δ-selective agonist, as a result of DPDPE or DAMGO administration, respectively. In addition, low doses of naloxone, an antagonist selective for μ receptors, increased the inhibitory effect of [ d -Ala2, d -Met5]enkephalinamide (DAME), a mixed μ/δ agonist, on adenylyl cyclase activity. Taken overall, these data support the hypothesis of the existence of a cross talk between μ and δ receptors in the SK-N-BE cell line.  相似文献   

5.
Abstract: The astrocytoma cell line rat C6 glioma has been used as a model system to study the mechanism of various opioid actions. Nevertheless, the type of opioid receptor(s) involved has not been established. Here we demonstrate the presence of high-affinity U69,593, endomorphin-1, morphine, and β-endorphin binding in desipramine (DMI)-treated C6 cell membranes by performing homologous and heterologous binding assays with [3H]U69,593, [3H]morphine, or 125I-β-endorphin. Naive C6 cell membranes displayed U69,593 but neither endomorphin-1, morphine, nor β-endorphin binding. Cross-linking of 125I-β-endorphin to C6 membranes gave labeled bands characteristic of opioid receptors. Moreover, RT-PCR analysis of opioid receptor expression in control and DMI-treated C6 cells indicate that both κ- and μ-opioid receptors are expressed. There does not appear to be a significant difference in the level of μ nor κ receptor expression in naive versus C6 cells treated with DMI over a 20-h period. Collectively, the data indicate that κ- and μ-opioid receptors are present in C6 glioma cells.  相似文献   

6.
Abstract: Voltage-dependent Ca2+ currents were measured in NG108-15 neuroblastoma × glioma hybrid cells transformed to express the rat μ-opioid receptor by the whole-cell configuration of the patch-clamp technique with Ba2+ as charge carrier. A μ-opioid receptor-selective agonist, [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin caused significant inhibition of voltage-dependent Ca2+ currents in μ-receptor-transformed NG108-15 cells but not in nontransfected or vector-transformed control cells. On the other hand, a δ-opioid receptor-selective agonist, [ d -penicillamine2, d -penicillamine5]enkephalin, induced inhibition of voltage-dependent Ca2+ currents in both control and μ-receptor-transformed cells, which is mediated by the δ-opioid receptor expressed endogenously in NG108-15 cells. The inhibition of voltage-dependent Ca2+ currents induced by [ d -Ala2, N -Me-Phe4,Gly5-ol]enkephalin and [ d -penicillamine2, d -penicillamine5]enkephalin was reduced by pretreatment of the cells with pertussis toxin or ω-conotoxin GVIA. These results indicate that the μ-opioid receptor expressed from cDNA functionally couples with ω-conotoxin-sensitive N-type Ca2+ channels through the action of pertussis toxin-sensitive G proteins in NG108-15 cells.  相似文献   

7.
8.
Abstract: Neurotensin and neuromedin N are two structurally related peptides that are synthesized by a common precursor. The purpose of the present work was to characterize neuromedin N receptors in rat and mouse brain and to compare these receptors with those of neurotensin. A radiolabeled analogue of neuromedin N has been prepared by acylation of the N-terminal amino group of the peptide with the 125I-labeled Bolton-Hunter reagent. This 125I-labeled derivative of neuromedin N bound to newborn mouse brain homogenate with high affinity (K d = 0.5 n M ). Cross-competition experiments between radiolabeled and unlabeled neurotensin and neuromedin N indicated that each peptide was able to displace completely and specifically the other peptide from its interaction with its receptor. Independently of the radioligand used, the affinity of neurotensin was always better than that of neuromedin N. Quantitative radioautographic studies demonstrated that the ratio of labeling intensities obtained with 125I-labeled analogues of neurotensin and neuromedin N remained constant in all the brain areas. Our results do not support the existence of a specific neuromedin N receptor in rat and mouse brain and can be explained by the presence of a common receptor for both peptides.  相似文献   

9.
Abstract : Agonist-induced down-regulation of opioid receptors appears to require the phosphorylation of the receptor protein. However, the identities of the specific protein kinases that perform this task remain uncertain. Protein kinase C (PKC) has been shown to catalyze the phosphorylation of several G protein-coupled receptors and potentiate their desensitization toward agonists. However, it is unknown whether opioid receptor agonists induce PKC activation under physiological conditions. Using cultured SH-SY5Y neuroblastoma cells, which naturally express μ- and δ-opioid receptors, we investigated whether μ-opioid receptor agonists can activate PKC by measuring enzyme translocation to the membrane fraction. PKC translocation and opioid receptor densities were simultaneously measured by 3H-phorbol ester and [3H]diprenorphine binding, respectively, to correlate alterations in PKC localization with changes in receptor binding sites. We observed that μ-opioid agonists have a dual effect on membrane PKC density depending on the period of drug exposure. Exposure for 2-6 h to [ d -Ala2, N -Me-Phe4, Gly-ol]enkephalin or morphine promotes the translocation of PKC from the cytosol to the plasma membrane. Longer periods of opioid exposure (>12 h) produce a decrease in membrane-bound PKC density to a level well below basal. A significant decrease in [3H]diprenorphine binding sites is first observed at 2 h and continues to decline through the last time point measured (48 h). The opioid receptor antagonist naloxone attenuated both opioid-mediated PKC translocation and receptor down-regulation. These results demonstrate that opioids are capable of activating PKC, as evidenced by enhanced translocation of the enzyme to the cell membrane, and this finding suggests that PKC may have a physiological role in opioid receptor plasticity.  相似文献   

10.
Abstract: The cellular mechanisms underlying opioid action remain to be fully determined, although there is now growing indirect evidence that some opioid receptors may be coupled to phospholipase C. Using SH-SY5Y human neuroblastoma cells (expressing both μ-and δ-opioid receptors), we demonstrated that fentanyl, a μ-preferring opioid, caused a dose-dependent (EC50= 16 n M ) monophasic increase in inositol (1,4,5)trisphosphate mass formation that peaked at 15 s and returned to basal within 1–2 min. This response was of similar magnitude (25.4 ± 0.8 pmol/mg of protein for 0.1 μ M fentanyl) to that found in the plateau phase (5 min) following stimulation with 1 m M carbachol (18.3 ± 1.4 pmol/mg of protein), and was naloxone-, but not naltrindole-(a δ antagonist), reversible. Further studies using [ d -Ala2, MePhe4, Gly(ol)5]enkephalin and [ d -Pen2,5]enkephalin confirmed that the response was specific for the μ receptor. Incubation with Ni2+ (2.5 m M ) or in Ca2+-free buffer abolished the response, as did pretreatment (100 ng/ml for 24 h) with pertussis toxin (control plus 0.1 μ M fentanyl, 26.9 ± 1.5 pmol/mg of protein; pertussis-treated plus 0.1 μ M fentanyl, 5.1 ± 1.3 pmol/mg of protein). In summary, we have demonstrated a μ-opioid receptor-mediated activation of phospholipase C, via a pertussis toxin-sensitive G protein, that is Ca2+-dependent. This stimulatory effect of opioids on phospholipase C, and the potential inositol (1,4,5)trisphosphate-mediated rises in intracellular Ca2+, could play a part in the cellular mechanisms of opioid action.  相似文献   

11.
Abstract: The δ-opioid receptor is known to regulate multiple effectors in various tissues. When expressed in human embryonic kidney 293 cells, the cloned δ-opioid receptor inhibited cyclic AMP (cAMP) accumulation in response to the δ-selective agonist [ d -Pen2, d -Pen5]enkephalin. The inhibitory response of [ d -Pen2, d -Pen5]enkephalin was dependent on the expression of the δ-opioid receptor and exhibited an EC50 of 1 n M . The receptor showed ligand selectivity and a pharmacological profile that is appropriate for the δ-opioid subtype. The inhibition was blocked by the opiate antagonist naloxone or by pretreatment of the cells with pertussis toxin. Cotransfection of the δ-opioid receptor with type II adenylyl cyclase and an activated mutant of αs converted the δ-opioid signal from inhibition to stimulation of cAMP accumulation. It is interesting that when transfected into Ltk fibroblasts, the cloned δ-opioid receptor was able to stimulate the formation of inositol phosphates (EC50 = 8 n M ). This response was sensitive to pertussis toxin. The opioid-mediated formation of inositol phosphates exhibited the same ligand selectivity as seen with the inhibition of cAMP accumulation. The ability of the δ-opioid receptor to couple to G proteins other than Gi was also examined. Cotransfection studies revealed that the δ-opioid receptor can utilize Gz to regulate cAMP accumulation and to stimulate the formation of inositol phosphates.  相似文献   

12.
Abstract: The effects of morphine and selective ligands for μ-, κ-, and δ-opioid receptors on the extracellular histamine (HA) concentration in the striatum of freely moving rats were examined by in vivo microdialysis. On the day after implantation of the dialysis probe, the HA output per 30-min period was measured using HPLC-fluorometry. Morphine (3.8 mg/kg, s.c.) significantly increased the HA output by ∼200% 1–3 h after treatment. This effect was completely antagonized by naltrexone (1.6 mg/kg, s.c.). The HA output decreased to a level below 10% of the basal value by 4 h after treatment with ( S )-α-fluoromethylhistidine (77 mg/kg, s.c.). In such animals, morphine (3.8 mg/kg, s.c.) had no influence on the HA output. [ d -Ala2,MePhe4,Gly(ol)5]Enkephalin (DAGO; 0.2 µg, i.c.v.), a selective μ-agonist, significantly increased the HA output by ∼150% 0.5–1.5 h after treatment, and this effect was also completely blocked by naltrexone. A selective κ-agonist, U-50,488 (3.8 and 7.6 mg/kg, s.c.), and a selective δ-agonist, [ d -Pen2, d -Pen5]enkephalin (0.5 and 2 µg, i.c.v.), had no effect on the HA output. These findings suggest that the stimulation of μ-opioid receptors by morphine and DAGO increases the extracellular HA concentration by accelerating HA release from nerve endings.  相似文献   

13.
Abstract: "High 5" cells derived from Trichoplusia ni ovaries were infected with baculovirus bearing the cDNA of the mouse δ-opioid receptor. The maximal binding capacity for the narcotic antagonist [3H]naltrindole was 1.4 pmol/mg of membrane protein, and that for the agonist [3H][ d -penicillamine2, d -penicillamine5]enkephalin (DPDPE) was 0.3 pmol/mg. DPDPE proved highly potent in competing with its tritiated analogue at δ-receptors of NG108-15 hybrid cells and of High 5 and Sf9 insect cells. However, in insect cells the opioid was more than 100-fold less effective in competing with [3H]naltrindole as compared with the mammalian cells. This decline in potency was counteracted in a dose-dependent manner by exposure of High 5 membranes to the exogenous G protein Go, which increased the binding capacity for DPDPE. Functional studies revealed a dose-dependent inhibition (up to 30%) by opioids on forskolin-stimulated cyclic AMP synthesis, and this effect was potentiated by Go. Quantification of Gαo and Gαi disclosed striking differences between Sf9 and High 5 insect cells, both of which overexpressed the cloned δ-opioid receptor. Although no inhibitory G proteins were detected in membranes of Sf9 cells, High 5 cells contained 0.5 pmol of Gαo/mg of membrane protein, and a 20-fold higher concentration for Gαi. The distinct G-protein expression in insect cells may be considered an advantage for studying functions of G protein-coupled receptors.  相似文献   

14.
Abstract: To examine whether the mitogen-activated protein kinase (MAPK) cascade and phospholipase A2 (PLA2) are involved in the signal transduction mechanism of the opioid receptor, the δ-, μ-, and κ-opioid receptors were stably expressed from cDNA in Chinese hamster ovary cells. Activation of the δ-, μ-, and κ-receptors by agonists induced a rapid and transient increase in MAPK activity accompanied by reduced electrophoretic mobility of the 42-kDa isoform of MAPK (p42), probably owing to phosphorylation. The opioid receptor-mediated increase in MAPK activity was suppressed not only by pretreatment with genistein, a tyrosine protein kinase inhibitor, but also by prolonged exposure to phorbol 12-myristate 13-acetate and pretreatment with GF 109203X, a selective protein kinase C (PKC) inhibitor, suggesting the involvement of PKC as well as tyrosine protein kinase. Furthermore, stimulation of the δ-, μ-, and κ-receptors with opioid agonists in the presence of A23187, a calcium ionophore, resulted in an increase in arachidonate release, suggesting that PLA2 is activated by the opioid receptors when the intracellular Ca2+ concentration is elevated. Both MAPK activation and increase in arachidonate release mediated by the opioid receptors were abolished by pretreatment with pertussis toxin, suggesting that these responses are mediated by Gi or Go types of GTP-binding regulatory proteins.  相似文献   

15.
16.
Abstract: Endomorphin-1 is a peptide whose binding selectivity suggests a role as an endogenous ligand at μ-opioid receptors. In the present study, the effect of endomorphin-1 on μ receptor-coupled G proteins was compared with that of the μ agonist DAMGO by using agonist-stimulated [35S]GTPγS binding in rat brain. [35S]GTPγS autoradiography revealed a similar localization of endomorphin-1 and DAMGO-stimulated [35S]GTPγS binding in areas including thalamus, caudate-putamen, amygdala, periaqueductal gray, parabrachial nucleus, and nucleus tractus solitarius. Naloxone blocked endomorphin-1-stimulated labeling in all regions examined. Although the distribution of endomorphin-1-stimulated [35S]GTPγS binding resembled that of DAMGO, the magnitude of endomorphin-1-stimulated binding was significantly lower than that produced by DAMGO. Concentration-effect curves of endomorphin-1 and DAMGO in thalamic membranes confirmed that endomorphin-1 produced only 70% of DAMGO-stimulated [35S]GTPγS binding. Differences in maximal stimulation of [35S]GTPγS binding between DAMGO and endomorphin-1 were magnified by increasing GDP concentrations, and saturation analysis of net endomorphin-1-stimulated [35S]GTPγS binding revealed a lower apparent B max value than that obtained with DAMGO. Endomorphin-1 also partially antagonized DAMGO stimulation of [35S]GTPγS binding. These results demonstrate that endomorphin-1 is a partial agonist for G protein activation at the μ-opioid receptor in brain.  相似文献   

17.
Abstract: Although it is well-established that G protein-coupled receptor signaling systems can network with those of tyrosine kinase receptors by several mechanisms, the point(s) of convergence of the two pathways remains largely undelineated, particularly for opioids. Here we demonstrate that opioid agonists modulate the activity of the extracellular signal-regulated protein kinase (ERK) in African green monkey kidney COS-7 cells transiently cotransfected with μ-, δ-, or κ-opioid receptors and ERK1- or ERK2-containing plasmids. Recombinant proteins in transfected cells were characterized by binding assay or immunoblotting. On treatment with corresponding μ- ([ d -Ala2,Me-Phe4,Gly-ol5]enkephalin)-, δ- ([ d -Pen2, d -Pen5]enkephalin)-, or κ- (U69593)-selective opioid agonists, a dose-dependent, rapid stimulation of ERK1 and ERK2 activity was observed. This activation was inhibited by specific antagonists, suggesting the involvement of opioid receptors. Pretreatment of cells with pertussis toxin abolished ERK1 and ERK2 activation by agonists. Cotransfection of cells with dominant negative mutant N17-Ras or with a βγ scavenger, CD8-β-adrenergic receptor kinase-C, suppressed opioid stimulation of ERK1 and ERK2. When epidermal growth factor was used to activate ERK1, chronic (>2-h) opioid agonist treatment resulted in attenuation of the stimulation by the growth factor. This inhibition was blocked by the corresponding antagonists and CD8-β-adrenergic receptor kinase-C cotransfection. These results suggest a mechanism involving Ras and βγ subunits of Gi/o proteins in opioid agonist activation of ERK1 and ERK2, as well as opioid modulation of epidermal growth factor-induced ERK activity.  相似文献   

18.
Abstract: We report the isolation and characterization of a rat cDNA clone encoding a μ-opioid receptor. This receptor, a 398 amino acid protein, shares 59% overall identity with the mouse Δ-and K -opioid receptors. Transient expression of the receptor in COS cells revealed high-affinity binding of μ-selective opioid antagonists and agonists, with a K D for naloxone ∼1.5 n M , and for [D-Ala2, N -Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine at the high-affinity site of 2–4 n M , confirming a μ-opioid pharmacological profile. Northern blotting and in situ hybridization histoohemistry revealed that the μ-opioid receptor mRNA was expressed in many brain regions, including cerebral cortex, caudate putamen, nucleus accumbens, olfactory tubercle, septal nuclei, thalamus, hippocampus, and medial habenular nucleus, in keeping with the known distribution of the μ-opioid receptor.  相似文献   

19.
Abstract: Adenylyl cyclase activity was measured following labelling of the cellular ATP pool with [3H]adenine in intact Rat-1 fibroblasts that had been stably transfected to express the murine δ-opioid receptor (clone D2). Basal [3H]cyclic AMP accumulation was low and was increased substantially by the addition of the diterpene forskolin. The synthetic enkephalin d -Ala2, d -Leu5 enkephalin (DADLE) produced strong inhibition of forskolin-amplified [3H]cyclic AMP production, whereas the δ-opioid ligand ICI174864 augmented forskolin-amplified adenylyl cyclase activity. Naloxone was unable to mimic the effects of ICI174864, and coincubation of the cells with these two ligands attenuated the effect of ICI174864. The EC50 (9.4 ± 0.6 × 10−8 M ) for ICI174864 augmentation of forskolin-stimulated adenylyl cyclase was equal to its estimated K i. Pertussis toxin pretreatment of clone D2 cells prevented both this effect of ICI174864 and the inhibition produced by DADLE. Use of a Cytosensor microphysiometer demonstrated that treatment of clone D2 cells with DADLE increased and that with ICI174864 decreased the basal rate of cellular proton extrusion. By using these two distinct experimental strategies, ICI174864 was shown to function in a manner anticipated for an inverse agonist, demonstrating that such effects can be observed in intact cells and are not restricted to assays performed on membrane preparations.  相似文献   

20.
Abstract: Peptides are of potential interest in the field of gene therapy but require modification by genetic engineering to facilitate their secretion. Amino terminal addition of a signal peptide is not always sufficient to achieve this goal, as found in this study for β-endorphin. To overcome this problem, addition of the pre-pro-sequence of mouse nerve growth factor to β-endorphin was tested. Retrovirus-mediated expression of a hybrid construct of the pre-pro-sequence of nerve growth factor and human β-endorphin in primary fibroblasts resulted in the secretion of β-endorphin immunoreactivity at a rate of 620 pg/h/106 cells. Analysis of the secreted β-endorphin immunoreactivity with reverse-phase HPLC, immunoassays using three different antibodies, and an assay for the specific displacement of [3H][ d -Ala2, N -MePhe4,Gly-ol5]enkephalin from μ-opioid receptors suggests that the pre-pro-sequence is cleaved off from the pre-pro-sequence/β-endorphin construct prior to secretion, resulting in bona fide β-endorphin. Transplantation of β-endorphin-secreting cells into brain or spinal cord may provide a gene therapy approach for the treatment of chronic, opioid-sensitive pain states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号