首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mutants in the bithorax system ofDrosophila produce homeotic transformations that affect the mesothoracic, metathoracic and first abdominal segments. In the present report we describe a clonal analysis of the development of those mutants transforming the metathorax and first abdominal segments into mesothorax.The main results indicate that (1) The normal dorsal metathoracic (haltere) disk has similar developmental parameters to the dorsal mesothoracic disk. The main difference is that the initial and final numbers of cells are different in both disks. (2) In flies mutant forBithorax andpostbithorax (which transform the haltere into wing) the transformed haltere disk has the same initial and final number of cells as the normal wing disk. (3) In morphogenetic mosaics homozygousbithorax (andpostbithorax) clones express their genotype autonomously regardless of the genotype of surrounding haltere cells. This autonomy is expressed in a regulation of the number of adult cells per compartment, typical cell affinities and final cuticular differentiation.  相似文献   

2.
Summary The metathoracic femoral chordotonal organ of the locust (Locusta migratoria) is an internal proprioceptor composed of mechanosensory neurones which respond to tibial position, velocity, or acceleration, or to combinations of these parameters. Discriminant function analyses confirmed the visual observation that neurones with different responses to tibial movements had different central branching patterns. Some aspects of the projections were consistent for all neurones (e.g., the path taken by the main neurite through the metathoracic ganglion), whereas other regions of branches were consistently reduced or missing in some response classes. Some position-and-acceleration receptors had no main branches off the main neurite, and must therefore make relatively restricted contact with motor neurones and interneurones. Phasic or tonic neurones which responded in ranges of tibial extension had branches which projected further medial in Dorsal Commissures III and IV than similar neurones which responded in ranges of tibial flexion. I compare my results to previous studies of mapping in the insect CNS.Abbreviations (ms) (mt)FCO (mesothoracic) (metathoracic) femoral chordotonal organ - ANOVA Analysis of Variance  相似文献   

3.
In males of the katydid Neoconocephalus robustus, mesothoracic wings are used in flight (wing stroke frequence = 20 Hz) and stridulation (200 Hz), while the metathoracic wings are used in flight alone. Most mesothoracic wing muscles produce much briefer isometric twitches than metathoracic counterparts. The mesothoracic first tergocoxal muscle (TCX1) has a twitch duration (onset to 50% relaxation, 35 degrees C) of 6-8 ms and the metathoracic TXC1 a twitch duration of 12-15 ms. The TCX1 muscles from animals one and two instars from adulthood produce twitches similar in duration to those of the adult metathoracic TCX1. The twitch duration of the mesothoracic TCX1 acquires its adult brevity gradually over the first 5 days of adult life. Both TCX1 muscles increase greatly in size and mitochondrial content around the time of the terminal molt. During this period the mesothoracic TCX1 develops narrower myofibrils and a smaller ratio of fibril volume to sarcoplasmic reticulum volume than is characteristic of the metathoracic TCX1. Changes in the ultrastructure of the mesothoracic TCX1 precede changes in contraction kinetics around the time of the terminal molt so that there is not a strict correlation between muscle structure and performance during the period of rapid growth.  相似文献   

4.
Summary The output connections of a bilaterally symmetrical pair of wind-sensitive interneurones (called A4I1) were determined in a non-flying locust (Schistocerca gregaria). Direct inputs from sensory neurones of specific prosternai and head hairs initiate spikes in these interneurones in the prothoracic ganglion.The interneurone with its axon in the right connective makes direct, excitatory connections with the two mesothoracic motor neurones innervating the pleuroaxillary (pleuroalar, M85) muscle of the right forewing, but not with the comparable motor neurones of the left forewing. The connections can evoke motor spikes.The interneurones also exert a powerful, but indirect effect on the homologous metathoracic pleuroaxillary motor neurones (muscle 114), and a weaker, indirect effect on subalar motor neurones of the hindwings. No connections or effects were found with other flight motor neurones, or motor neurones innervating hindleg muscles, including common inhibitor 1 which also innervates the pleuroaxillary muscle.One thoracic interneurone with its cell body in the right half of the mesothoracic ganglion and with its axon projecting ipsilaterally to the metathoracic ganglion receives a direct input from the right A4I1 interneurone.These restricted output connections suggest a role for the A4I1 interneurones in flight steering.Abbreviations DCMD descending contralateral movement detector - EPSP excitatory postsynaptic potential - TCG tritocerebral commissure giant (interneurone)  相似文献   

5.
Duplicated neural structure in bithorax mutant Drosophila   总被引:1,自引:0,他引:1  
The bithorax complex (BX-C) of genes in Drosophila control the segmental identity of the thoracic and abdominal cuticle. In flies containing BX-C mutations causing meta- to mesothoracic transformation, the mesothoracic branching pattern of a well-studied identified neuron is faithfully duplicated in the metathoracic ganglion. Thus these mutations also cause the duplication of mesothoracic cues involved in this neuron's branching.  相似文献   

6.
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.  相似文献   

7.
Using a monoclonal antibody and image-processing procedures, the patterns of expression of the Ultrabithorax (Ubx) gene product have been characterized in Drosophila larvae. As reported previously, the metathoracic imaginal discs stain most intensely with anti-Ubx, with some mesothoracic and no prothoracic expression detectable. In the metathoracic discs, the greatest modulation in anti-Ubx staining is along the proximodistal axis. Ubx is generally expressed at higher levels in the posterior regions of metathoracic discs, although relatively high anterior expression is found in some areas. Expression in the mature wing disc is confined to the squamous peripodial membrane cells; in younger wings, Ubx expression fills the posterior half of the peripodial side of the disc. The mesothoracic leg stains with a pattern that is qualitatively similar (but not identical) to that of the metathoracic leg; Ubx is expressed in some anterior regions of the mesothoracic leg, in parasegment 4. Double staining with anti-Ubx and anti-engrailed reveals that discontinuities in Ubx expression that have been suggested to correspond to compartment borders do not coincide with the compartment boundaries in some cases. In the larval ventral ganglion, Ubx expression is greatest in parasegments 5 and 6, as in the embryonic nervous system.  相似文献   

8.
The eversion, migration, spreading, and fusion of the thoracic imaginal discs during metamorphosis of Drosophila are described using timed whole-mount preparations and several molecular markers. The leading edge of the migrating disc epithelia consists of two groups of cells, stalk cells (S cells) and specialized imaginal cells (I cells), that both express the gene puckered. With this and other markers, opening of the stalk, eversion of the discs, migration of the leading edges, and fusion of the imaginal epithelia can be visualized in detail. Fusion is initiated by S cells that migrate over the larval epithelium and constitute a bridge between two imaginal epithelia. S cells are subsequently lost and imaginal fusion is mediated by the I cells that remain at the site of fusion. The possible cellular basis of this process is discussed. Fusion along the dorsal midline of the notum from the mesothoracic wing discs occurs earlier than that of the prothoracic and metathoracic discs, which remain in a lateral position. For a relatively long period (30 h) the mesothoracic epithelium becomes attached to the head and abdomen, causing a temporary local discontinuity of the order of segments. Later the pro- and metathoracic discs intercalate between head and mesothorax and between abdomen and mesothorax, respectively, to reestablish the normal order.  相似文献   

9.
Anatomy of dorsal mesothoracic structures, such as muscles, sensory organs, and innervation, was studied in the silkworm, Bombyx mori L. (Lepidoptera : Bombycidae), and compared with the adult wing motor system. Musculature and nerve innervation were investigated by dissection and electron micrograph; and central projection of sensory fibers and morphology of somata and dendrites of motor neurons by cobalt back-filling, followed by silver intensification. There are 23 muscle bundles (DLM) and 2 stretch receptors (SR). The DLMs, SRs, and epidermis are innervated by a branch of the dorsal nerve trunk emerging from the mesothoracic ganglion (MSG). The branch bifurcates into a dorsal sensory branch of about 300 sensory fibers and a dorsal motor branch of 14 fibers. The sensory fibers project mainly to a longitudinal portion near the mid line in the ventral neuropil of MSG and the metathoracic ganglion. Several fibers extend into the prothoracic ganglion (PG) and a few into the subesophageal and 1st abdominal ganglia. At least 13 (probably 14) motor neurons send axons to DLMs: 9 (probably 10) in PG, and 4 in MSG. Their dendrites are located mostly on the dorsoipsilateral side of the neuropil, but several branches cross the mid line and give rise to many fine branches on the contralateral side. Comparison between the larval (present study) and adult motor system shows a significant similarity in the musculature, peripheral nerve pattern, and motor neurons with some peculiarities.  相似文献   

10.
Intracellular recordings were carried out on locust flight motoneurons after hemisection of individual thoracic ganglia. With the exception of minimal surgical manipulations, the animals were intact and able to perform tethered flight. Analysis of the synaptic drive recorded in the motoneurons during flight motor activity revealed the extent to which ganglion hemisection influenced the premotor rhythm generating network.
1.  Hemisection of the mesothoracic ganglion (Fig. 2) as well as hemisection of both the mesothoracic and the prothoracic ganglia (Fig. 3) had no significant effects on the pattern of synaptic input to the flight motoneurons. Thus the rhythm generating premotor network does not depend on commissural information transfer in the mesothoracic and the prothoracic ganglia. This conclusion was supported by experiments in which more extensive surgical isolations of thoracic ganglia were carried out (Fig. 5).
2.  Removal of input from wing receptors (deafferentation) in addition to hemisection of the mesothoracic ganglion (Fig. 4) resulted in rhythmic and coordinated oscillations of the motoneuron membrane potential which were indistinguishable from those observed in deafferented animals with all ganglia intact.
3.  Hemisection of the metathoracic ganglion had more pronounced effects on the patterns of synaptic drive to the flight motoneurons and their spike discharge. Rhythmic activity which was often subthreshold could, however, still be recorded following a metathoracic split (Fig. 6).
4.  No rhythmic synaptic input was observed after hemisection of both mesothoracic and metathoracic ganglia (Fig. 7).
  相似文献   

11.
Summary In Locusta migratoria and Schistocerca gregaria, the projection areas and branching patterns of the tympanal receptor cells in the thoracic ganglia were revealed. Four auditory neuropiles can be distinguished on each side of the ventral cord, always located in the anterior part of the ring tract in each neuromere (two in the meta-, one in the meso-, and one in the prothoracic ganglion). Some of the receptor fibres ascend to the suboesophageal ganglion. There are distinct subdivisions within the auditory, frontal metathoracic and mesothoracic neuropiles. The arrangement of the terminal arborisations of the four types of tympanal receptor cells according to their different frequency-intensity responses is somatotopic and similar in the two ganglia. Here the receptor cells of type-1 form a restricted lateroventral arborisation. Cells of type-4 occupy the caudal part with a dorsorostral extension. Cells of type-2 and -3 arborise in a subdivision between both. Most of the stained low-frequency receptors (type-1, -2, and -3) terminate either in the metathoracic or, predominantly, in the mesothoracic ganglion. In contrast, the high-frequency cells (type-4) ascend to the prothoracic ganglion. The receptor fibres of the different types of receptor cells differ in diameter.Abbreviations aRT anterior part of the ring tract - cf characteristic frequency - MVT median ventral tract - SEG suboesophageal ganglion - SMC supramedian commissure - VMT ventral median tract - VIT ventral intermediate tract Supported by the Deutsche Forschungsgemeinschaft; part of program A7 in Sonderforschungsbereich 305 (Ecophysiology)  相似文献   

12.
The receptor mechanism mediating the avoidance behaviour of flying noctuid moths in response to brief ultrasonic pulses may require only a single pair of acoustic sense cells, one A1 cell in each tympanic organ (Roeder, 1966c). Introduction of the fluorescent dye, procion yellow, into the nerve fibres leaving the tympanic organ has allowed the reconstruction of the central morphology of A1, the more sensitive of the two acoustic cells. The A1 axon follows a superficial course for the first ~100 μ auterior to its dorsal root of entry (3N1) into the thoracic ganglia, then plunges ventrally into the posterior mesothoracic neuropil where it branches. The posterior part reaches through two-thirds of the metathoracic ganglion. The anterior branch bifurcates in the anterior mesothoracic ganglion to give rise to a posteriorly directed branch extending through the ventral mesothoracic neuropil and an anterior branch which passes through the connective into the posterior half of the prothoracic ganglion. Here it ramifies along the midline. The cell remains strictly ipsi-lateral with numerous processes extending right up to the midline in the ventral neuropil of all three ganglia. This morphology correlates well with the map of sites from which A1 acoustic responses can be recorded in the central nervous system.  相似文献   

13.
Two independent methods of comparison, serial homology and phylogenetic character mapping, are employed to investigate the evolutionary origin of the noctuoid moth (Noctuoidea) ear sensory organ. First, neurobiotin and Janus green B staining techniques are used to describe a novel mesothoracic chordotonal organ in the hawkmoth, Manduca sexta, which is shown to be serially homologous to the noctuoid metathoracic tympanal organ. This chordotonal organ comprises a proximal scolopidial region with three bipolar sensory cells, and a long flexible strand (composed of attachment cells) that connects peripherally to an unspecialized membrane ventral to the axillary cord of the fore-wing. Homology to the tympanal chordotonal organ in the Noctuoidea is proposed from anatomical comparisons of the meso- and metathoracic nerve branches and their corresponding peripheral attachment sites. Second, the general structure (noting sensory cell numbers, gross anatomy, and location of peripheral attachment sites) of both meso- and metathoracic organs is surveyed in 23 species representing seven superfamilies of the Lepidoptera. The structure of the wing-hinge chordotonal organ in both thoracic segments was found to be remarkably conserved in all superfamilies of the Macrolepidoptera examined except the Noctuoidea, where fewer than three cells occur in the metathoracic ear (one cell in representatives of the Notodontidae and two cells in those of other families examined), and at the mesothoracic wing-hinge (two cells) in the Notodontidae only. By mapping cell numbers onto current phylogenies of the Macrolepidoptera, we demonstrate that the three-celled wing-hinge chordotonal organ, believed to be a wing proprioceptor, represents the plesiomorphic state from which the tympanal organ in the Noctuoidea evolved. This ’trend toward simplicity’ in the noctuoid ear contrasts an apparent ’trend toward complexity’ in several other insect hearing organs where atympanate homologues have been studied. The advantages to having fewer rather than more cells in the moth ear, which functions primarily to detect the echolocation calls of bats, is discussed. Accepted: 18 June 1999  相似文献   

14.
The Tufted(1) (Tft(1)) dominant mutation promotes the generation of ectopic bristles (macrochaetae) in the dorsal mesothorax of Drosophila. Here we show that Tft(1) corresponds to a gain-of-function allele of the proneural gene amos that is associated with a chromosomal aberration at 36F-37A. This causes ectopic expression of amos in large domains of the lateral-dorsal embryonic ectoderm, which results in supernumerary neurons of the PNS, and in the notum region of the third instar imaginal wing, which gives rise to the mesothoracic extra bristles. Revertants of Tft(1), which lack ectopic neurons and bristles, do not show ectopic expression of amos. One revertant is a loss-of-function allele of amos and has a recessive phenotype in the embryonic PNS. Our results suggest that both normal and ectopic Tft(1) bristles are generated following similar rules, and both are subjected to Notch-mediated lateral inhibition. The ability of Tft(1) bristles to appear close together may be due to amos having a stronger proneural capacity than that of other proneural genes like asense and scute. This ability might be related to the wild-type function of amos in promoting development of large clusters of closely spaced olfactory sensilla.  相似文献   

15.
卢筝 《昆虫学报》1989,32(2):170-175
本文对小地老虎Agrotis ypsilon 成虫循环系统的形态作了初步研究,表明背血管由6个心室的心脏和倒V形的胸部大血管及头部分支的大血管组成.中胸辅搏动器很发达,与大血管的腔直接相连,具有一个小盾片腔前半部的肌肉搏动膜.后胸辅搏动器很小,与背血管无直接通道,具有一个没有肌肉的搏动膜.腹膈显著,具有翼肌.还描述了心脏和辅搏动器的搏动情形.  相似文献   

16.
Two mayfly species Prosopistoma trispinum sp.n. and P. unicolor sp.n. collected from southwestern China are described as new to science, their main diagnostic larval characters are illustrated. The larvae of P. trispinum sp. n. can be differentiated by the large number of mandibular bristles, fewer spines on the inner margins of fore tibiae and mesonotal color pattern. The larva of P. unicolor sp. n. can be distinguished by its uniform reddish brown mesothoracic carapace which has no median ridge, and by more tiny serrated foretibial bristles. New distributional records for P. annamense Soldán et Braasch in China are first provided. The habitats of Chinese Prosopistomatidae show they can live in lotic water from stream to large river.  相似文献   

17.
The presence of scolopophorous organs in aquatic Heteroptera has been reported in a number of species. This study presents a morphological investigation of these sensory structures of Lethocerus (Belostomatidae) as observed with the scanning electron microscope (SEM). Paired mesothoracic and metathoracic organs are present. Externally, each sensory structure consists of a raised sensory membrane. The distal-most portion consists of thickenings of this sensory membrane (sclerite). The receptor neurons of the mesothoracic organ are of two types—one discolopidial sensillum and 12 monoscolopidial sensilla. The former is attached to the internal wall and distal thickening of the sensory membrane, while the latter are dispersed throughout the interior and attached to the internal wall of the sensory membrane. The structure of the organs suggest that an effective stimulus could be a compression of the membrane. A discussion of possible functions (pressure reception and hearing) is included.  相似文献   

18.
Summary An antiserum raised against gamma aminobuyric acid (GABA) was used to stain the thoracic nervous system of the locust. It stained both neuronal somata and processes within the neuropile. Among the stained somata, those of the three pairs of common inhibitory motor neurones could be identified in each of the three thoracic ganglia. In the pro- and mesothoracic ganglia five discrete groups of somata are stained, four ventral and one dorsal. In the metathoracic neuromere, an additional second dorsal group can be identified. In the abdominal neuromeres of the metathoracic ganglion both dorsal and ventral somata are stained but the latter cannot be divided into discrete populations. In each ganglion, dorsal commissures (DC) IV and V are composed of stained neurites, DCVII, the supramedian commissure, the perpendicular tract, and all the longitudinal tracts contain both stained and unstained neurites. DCI, II, III and VI, the T and I tracts are unstained. An abundance of GABA-like immunoreactive processes is found throughout the neuropile except for the anterior ventral association centre where stained processes are sparser. Some of the stained cell groups contain neurones that have been studied physiologically. The function of these neurones is discussed.Beit Memorial Fellow  相似文献   

19.
In the grasshopperChorthippus biguttulus the stridulatory movements of males with surgically manipulated ventral nerve cords were investigated.
1.  The stridulation pattern of animals with a hemisected mesothoracic ganglion was indistinguishable from that of intact animals.
2.  After hemisection of the metathoracic ganglion several animals were still able to stridulate in the species-specific pattern (Figs. 3, 5). Different structural elements of the song, however, were affected to different degrees by this operation. Although the stereotyped up-and-down movements were normal, the rhythm of pauses, which in intact animals are inserted after every third to fourth up- and-down cycle, was disturbed. As a result, the variation of syllable lengths was much higher (Fig. 4).
3.  A prominent feature after hemisection of the metathoracic ganglion was an almost complete loss of coordination between left and right hind legs (Figs. 5–7). Only in the coarse structure of the song (e.g. the beginning and termination of song sequences) was a correlation of the leg movements still discernible. This was especially obvious in songs of the rivalry type and in precopulatory kicking movements (Fig. 8).
4.  If in addition to hemisection of the metathoracic ganglion one of the neck connectives was transected the animals stridulated only with the hind leg ipsilateral to the intact connective (Fig. 11).
5.  Even after hemisection of both the meso- and metathoracic ganglia, animals were able to produce the species-specific stridulation pattern (Fig. 9).
6.  In animals with hemisected metathoracic ganglia and both connectives between pro- and mesothoracic ganglia transected, components of the species-specific pattern could be induced by current injection into the mesothoracic ganglion (Fig. 10).
7.  These results suggest that the stridulation rhythm-producing neuronal network is composed of hemisegmental subunits. A hemiganglionic structure of rhythm generators might reflect the ancestral organization of locomotion-controlling networks.
  相似文献   

20.
Summary The flight behavior of locusts with hemisected mesothoracic or metathoracic ganglia was observed in unrestrained animals and monitored electromyographically in tethered animals. Animals with hemisected mesothoracic ganglia were able to initiate and carry out free flight. Hemisection of the mesothoracic ganglion caused no significant changes in the pattern of flight muscle firing; both intra- and intersegmental coordination of flight muscle activity were retained (Figs. 3, 4). Additional transection of one meso-metathoracic connective altered the pattern of flight muscle firing but did not abolish rhythmic activity (Fig. 8). Deafferentation of the thoracic ganglia in animals with hemisected mesothoracic ganglia resulted in rhythmically coordinated motor activity (Fig. 5) which was indistinguishable from that shown by deafferented animals with all ganglia intact. Hemisection of the metathoracic ganglion resulted in an abnormal pattern of flight muscle firing. However, a basic rhythmicity of motor activity was still present (Fig. 6). The implications of these results for rhythm generation and motor coordination in the flight control system of the locust are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号