首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snegir'  M. A. 《Neurophysiology》2002,34(1):52-57
We compared the visual evoked EEG potentials (VEP) elicited by presentation of a reversal chess pattern in patients with glaucoma and in the control group. Amplitudes, peak latencies of the main VEP components (N75, P100, and N145), interpeak intervals, and interpeak magnitudes were measured, and a spectral analysis of the averaged VEP was performed. In patients suffering from glaucoma, the latencies of the N75 and P100 components were greater, while the interpeak intervals P100-N145 and N75-N145 were shorter, than those in the control group. Glaucoma-related changes in the VEP spectral characteristics, in particular a drop in the spectral power of oscillations corresponding to the alpha rhythm, were observed.  相似文献   

2.

Objectives

During surgeries that put the visual pathway at risk of injury, continuous monitoring of the visual function is desirable. However, the intraoperative monitoring of the visual evoked potential (VEP) is not yet widely used. We evaluate here the clinical utility of intraoperative VEP monitoring.

Methods

We analyzed retrospectively 46 consecutive surgeries in 2011-2013. High luminance stimulating devices delivered flash stimuli on the closed eyelid during intravenous anesthesia. We monitored VEP features N75 and P100 and took patients'' preoperative and postoperative visual function from patient charts. Postoperative ophthalmologic workup was performed in 25 (54%) patients and preoperatively in 28 (61%) patients.

Results

VEP recordings were feasible in 62 of 85 eyes (73%) in 46 patients. All 23 eyes without VEP had impaired vision. During surgery, VEPs remained stable throughout surgery in 50 eyes. In 44 of these, visual function did not deteriorate and three patients (6 eyes) developed hemianopia. VEP decreased transiently in 10 eyes and visual function of all was preserved. VEPs were lost permanently in 2 eyes in two patients without new postoperative visual impairment.

Conclusions

Satisfactory intraoperative VEP monitoring was feasible in all patients except in those with severe visual impairment. Preservation of VEPs predicted preserved visual function. During resection of lesions in the visual cortex, VEP monitoring could not detect new major visual field defects due to injury in the posterior visual pathway. Intraoperative VEPs were sensitive enough to detect vascular damage during aneurysm clipping and mechanical manipulation of the anterior visual pathway in an early reversible stage. Intraoperative VEP monitoring influenced surgical decisions in selected patients and proved to be a useful supplement to the toolbox of intraoperative neurophysiological monitoring.  相似文献   

3.
Replicable oscillatory potentials, time-locked to pattern stimuli (9.0° central; counterphase reversal at 2.13 Hz) were dissociated from conventional, broad-band VEPs recorded in healthy volunteers at occipital scalp locations by high-pass digital filtering at 17.0–20.0 Hz. Nine consecutive wavelets were identified with a 56.4 ± 8.4 msec mean latency of the first replicable wavelet and mean peak-to-peak amplitude varying between 0.9 and 2.0 μV. The first 2 wavelets had significantly shorter latencies than wave N70 of unfiltered VEP, whereas the last 2 wavelets had longer latencies than N145. Latency and amplitude values varied as a function of contrast and spatial frequency of the stimulus, with shorter latencies and larger amplitudes at 60–90% contrast level and tuning of amplitude at 5.0 c/deg. All wavelets were correlated with wave P100 of unfiltered VEP, while a correlation with N70 of VEP was observed only for those wavelets with latencies in the range of wave P100. Two patients with documented brain lesions involving the visual system are described as examples of oscillatory responses occurring irrespective of filter bandpass and instead of the expected conventional VEP when the generation of these is interfered with by brain pathology. A substantial cortical contribution to the origin of the oscillatory response is conceivable. It is suggested that the oscillatory response to pattern-reversal stimulation reflects events in the visual system that are parallel to, and partly independent of, the conventional VEP, with potential application in research or for clinical purposes.  相似文献   

4.

Background

Visual cross-modal re-organization is a neurophysiological process that occurs in deafness. The intact sensory modality of vision recruits cortical areas from the deprived sensory modality of audition. Such compensatory plasticity is documented in deaf adults and animals, and is related to deficits in speech perception performance in cochlear-implanted adults. However, it is unclear whether visual cross-modal re-organization takes place in cochlear-implanted children and whether it may be a source of variability contributing to speech and language outcomes. Thus, the aim of this study was to determine if visual cross-modal re-organization occurs in cochlear-implanted children, and whether it is related to deficits in speech perception performance.

Methods

Visual evoked potentials (VEPs) were recorded via high-density EEG in 41 normal hearing children and 14 cochlear-implanted children, aged 5–15 years, in response to apparent motion and form change. Comparisons of VEP amplitude and latency, as well as source localization results, were conducted between the groups in order to view evidence of visual cross-modal re-organization. Finally, speech perception in background noise performance was correlated to the visual response in the implanted children.

Results

Distinct VEP morphological patterns were observed in both the normal hearing and cochlear-implanted children. However, the cochlear-implanted children demonstrated larger VEP amplitudes and earlier latency, concurrent with activation of right temporal cortex including auditory regions, suggestive of visual cross-modal re-organization. The VEP N1 latency was negatively related to speech perception in background noise for children with cochlear implants.

Conclusion

Our results are among the first to describe cross modal re-organization of auditory cortex by the visual modality in deaf children fitted with cochlear implants. Our findings suggest that, as a group, children with cochlear implants show evidence of visual cross-modal recruitment, which may be a contributing source of variability in speech perception outcomes with their implant.  相似文献   

5.
The present study was designed to establish visual evoked potential (VEP) as one of clinical tests for veterinary medicine. Experiments were carried out on eight adult male guinea pigs weighed 350 to 750 g. We investigated influences of click sound, luminous intensity and habituation on VEP patterns. The VEP of the guinea pig was composed of primary (P 10, N 20, P 30, N 40) and secondary (P 55, N 75, P 100, N 140) components, followed by a rhythmic after-discharge. Click sound with flash produced some unclear peaks in VEP, while click sound without flash elicited clear six peaks. These different components of the response to stimulation suggested that the acoustically evoked potential induced some peaks in VEP. With the intensity used in the present study, changes in luminous intensity resulted in unrecognizable difference among the VEPs. Early components of VEP were not clearly influenced by the habituation to stimulation. As the stimulation was repeated, rhythmic after-discharge seemed to be suppressed in the half of experiments.  相似文献   

6.
This study is an extension of the experimental research of Nalçac et al., who presented 16 subjects with a reversal of checkerboard pattern as stimuli in the right visual field or left visual field and recorded EEG at O1, O2, P3, and P4. They applied the chosen bandpass filters (4–8, 8–15, 15–20, 20–32 Hz) to the VEPs of subjects and obtained four different components for each VEP. The first aim of this study is to improve the previous report using some methods in time-frequency domain to estimate interhemispheric delays and amplitudes in a time window. Using the improved estimates of interhemispheric delays, the second aim is to estimate the proportion of callosal fibers of different diameters that are activated by visual stimuli by comparing amplitudes of VEPs in different frequency bands. If the relation between frequency components of VEP and delays for callosal fibers of different dimension were reliable, it would give us an opportunity to deal with amplitude of bandpass-filtered VEPs in order to see approximately the proportion of these fibers activated by a certain stimulus. By using frequency-dependent shifts in time and maximizing the cross correlation of direct VEP (DVEP–VEP obtained from contralateral hemisphere)–indirect VEP (IVEP–VEP obtained from ipsilateral hemisphere) pairs in the time-frequency domain, we examined the delay not only at P100 and N160 peaks but along a meaningful time interval as well. Furthermore, by shifting back the IVEP according to the delay estimated at each time window, both the amplitudes and energies of the synchronized DVEP–IVEP pairs were compared at the chosen frequency bands. The percentages of IVEPs at each band was then examined further in conjunction with the distribution of axon diameters in the posterior pole of the CC, questioning the relation between the distributions of the axon diameters and activations at each band. We established an energy definition to express the activation in the fibers. When the energy percentages of IVEPs in theta and alpha were totaled, they were found to be between 76.2% and 81.6%, which is close to the value 74–77% for fibers of 0.4–1 m in diameter obtained from anatomical study of human CC. The sum of energy percentages in the beta1 and beta2 bands was between 20.1% and 24.2%, which probably reflects the proportion of activation of callosal fibers 1–3 m in diameter.  相似文献   

7.
Summary Visual unit activity, EEG changes and sustained potential shifts (SPS) were recorded from the toad tectum whilst the animal was presented with a visual stimulus. Telencephalic EEGs were also recorded.On the surface of the tectum, retinal unit activity preceded a sustained negative shift in potential and an increase in the amplitude and dominant frequency of the EEG. In deeper layers of the tectum, T5 units with configurational selectivity for wormlike stimuli were found. The activity of these units followed a pronounced SPS and EEG change.Visual unit activity was most pronounced during the negative-going phase of the synchronised EEG, when there was also a small decrease in amplitude of neuronal spikes. Similarities between the latencies and durations of EEGs and SPSs, and their response decrements, on repeated stimulus presentation, implies a close relationship between them not shared by the visual units studied. The specific activity of tectal units is discussed in relation to the correlated EEG and SPS changes, which may form part of an adaptive sensitizing mechanism.Abbreviations EEG electroencephalogram - ERF excitatory receptive field - SPS sustained potential shift - T4, T5 tectal neurons  相似文献   

8.
Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM). Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP) testing and 47 patients underwent Humphrey''s visual field (HVF) testing. Decreased best corrected visual acuity (BCVA) was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9%) right eyes and 50/74 (67.6%) left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5) ms and 119.8 (±15.7) ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10) ms (p<0.001). Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6%) right eyes and 32/45 (71.1%) left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM.  相似文献   

9.
We studied the parameters of visual evoked potentials (VEP) recorded in humans involved in the cleanup work after the Chernobyl’ catastrophe and in persons of the control group. The VEP evoked by presentation of a reversing chessboard pattern were significantly modified in the group of cleanup workers: in many subjects their shape was drastically changed, the mean latent periods for P100 and N145 waves increased, and their amplitudes significantly dropped. The amplitude of the P200 component somewhat increased in the group of cleanup workers. Possible reasons for the observed changes in the evoked electrical activity and the mechanisms underlying the changes in the visual analyzer of the persons subjected to long-term irradiation are discussed.  相似文献   

10.
Effects of taurine supplementation on VDT work induced visual stress   总被引:4,自引:0,他引:4  
Summary. In order to evaluate the effects of dietary taurine supplementation on visual fatigue induced by visual display terminals (VDT) work, 25 male college students aged from 20 to 24 years who were not engaged in VDT work were selected to participate in the study. Volunteers were randomly assigned to either the taurine supplementation (n=13) or the placebo supplementation control group (n=12). Before and after 12 days of taurine (3g/day) or placebo supplementation, two identical 2.5-hr VDT work tests were performed while recording the P100, N75 and N145 latencies and P100 amplitude of pattern visual evoked potential (PVEP) and the frequency of critical flicker fusion (CFF). Following 2.5-hr of VDT work, the P100 and N75 latencies of PVEP increased (P<0.01) while the P100 amplitude decreased significantly (P<0.01). The frequency of CFF also reduced significantly (P<0.01). After 12 days of taurine supplementation, the reduction in P100 amplitude after VDT work alleviated significantly (P<0.05). The results suggest that taurine supplementation alleviates visual fatigue induced by VDT work.  相似文献   

11.

Background

In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects.

Methodology/Principal Findings

Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasi-instantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect.

Conclusions/Significance

Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by the SPCN, at least in discrimination tasks in which the target is presented concurrently with at least one distractor. Given that the SPCN was previously associated to conscious report, these results further show that entry into consciousness is delayed following invalid cues.  相似文献   

12.
Chromatic and achromatic visual evoked potentials (VEP) were evaluated in 39 patients with idiopathic Parkinson's disease (PD) (age 64.0 ± 8.6 years) and 43 healthy controls (age 62.8 ± 8.7 years). The following pattern-reversal checkerboard stimuli were performed: (1) achromatic with luminance contrast 86% (achr.hk.); (2) achromatic with luminance contrast 20% (achr.lk.); (3) chromatic isoluminant blue-yellow (by.); (4) chromatic isoluminant red-green (rg.). The mean latencies N70, P100, and N135 of chromatic and achromatic VEP were significantly delayed in patients with PD as compared to controls. The highest rate (41.0%) of pathological findings could be demonstrated by achromatic stimulation (luminance contrast 86%). Isolated abnormalities of chromatic VEP (in combination with normal achromatic VEP) were found in 5 (12.8%) patients. The delay of VEP-latencies was significantly correlated with the severity of motor symptoms in PD patients. We conclude that VEP are valuable tools to demonstrate a dysfunction of the visual system in PD. Although chromatic VEP are less sensitive than achromatic VEP, the combination of both will increase the diagnostic yield. Therefore, there seems to exist a variety of individual characters of visual impairment in PD.  相似文献   

13.

Background

Early markers of axonal and clinical outcomes are required for early phase testing of putative neuroprotective therapies for multiple sclerosis (MS).

Objectives

To assess whether early measurement of diffusion tensor imaging (DTI) parameters (axial and radial diffusivity) within the optic nerve during and after acute demyelinating optic neuritis (ON) could predict axonal (retinal nerve fibre layer thinning and multi-focal visual evoked potential amplitude reduction) or clinical (visual acuity and visual field loss) outcomes at 6 or 12 months.

Methods

Thirty-seven patients presenting with acute, unilateral ON were studied at baseline, one, three, six and 12 months using optic nerve DTI, clinical and paraclinical markers of axonal injury and clinical visual dysfunction.

Results

Affected nerve axial diffusivity (AD) was reduced at baseline, 1 and 3 months. Reduced 1-month AD correlated with retinal nerve fibre layer (RNFL) thinning at 6 (R=0.38, p=0.04) and 12 months (R=0.437, p=0.008) and VEP amplitude loss at 6 (R=0.414, p=0.019) and 12 months (R=0.484, p=0.003). AD reduction at three months correlated with high contrast visual acuity at 6 (ρ = -0.519, p = 0.001) and 12 months (ρ = -0.414, p=0.011). The time-course for AD reduction for each patient was modelled using a quadratic regression. AD normalised after a median of 18 weeks and longer normalisation times were associated with more pronounced RNFL thinning and mfVEP amplitude loss at 12 months. Affected nerve radial diffusivity (RD) was unchanged until three months, after which time it remained elevated.

Conclusions

These results demonstrate that AD reduces during acute ON. One month AD reduction correlates with the extent of axonal loss and persistent AD reduction at 3 months predicts poorer visual outcomes. This suggests that acute ON therapies that normalise optic nerve AD by 3 months could also promote axon survival and improve visual outcomes.  相似文献   

14.

Background

Selective visual attention is the process by which the visual system enhances behaviorally relevant stimuli and filters out others. Visual attention is thought to operate through a cortical mechanism known as biased competition. Representations of stimuli within cortical visual areas compete such that they mutually suppress each others'' neural response. Competition increases with stimulus proximity and can be biased in favor of one stimulus (over another) as a function of stimulus significance, salience, or expectancy. Though there is considerable evidence of biased competition within the human visual system, the dynamics of the process remain unknown.

Methodology/Principal Findings

Here, we used scalp-recorded electroencephalography (EEG) to examine neural correlates of biased competition in the human visual system. In two experiments, subjects performed a task requiring them to either simultaneously identify two targets (Experiment 1) or discriminate one target while ignoring a decoy (Experiment 2). Competition was manipulated by altering the spatial separation between target(s) and/or decoy. Both experimental tasks should induce competition between stimuli. However, only the task of Experiment 2 should invoke a strong bias in favor of the target (over the decoy). The amplitude of two lateralized components of the event-related potential, the N2pc and Ptc, mirrored these predictions. N2pc amplitude increased with increasing stimulus separation in Experiments 1 and 2. However, Ptc amplitude varied only in Experiment 2, becoming more positive with decreased spatial separation.

Conclusions/Significance

These results suggest that N2pc and Ptc components may index distinct processes of biased competition—N2pc reflecting visual competitive interactions and Ptc reflecting a bias in processing necessary to individuate task-relevant stimuli.  相似文献   

15.
Modifications of the components of pattern-reversal visual evoked potentials (PR-VEP) with changes in check size of the stimulating pattern were studied in 11 healthy subjects. We made use of 8 different check size ranging between 10 and 90 min of arc. Changes in the check size modified in different manners the latencies and amplitudes of N75, P100 and N145. Two-step statistical analyses using the polynomial regression analysis method revealed significant modifications of latencies of the 3 components, but non-significant modifications of the amplitudes, except for N75. The latency and amplitude of N75 showed a significant inverse linear relationship with the logarithm of the check size, while the P100 and N145 latencies showed significant curvilinear relationships, with minimal latencies at check sizes around 35 min. These findings suggest different physiological properties of N75 from those of P100 and N145, and hence, the necessity to establish normal values for each check size of stimulation, for application in clinical studies.  相似文献   

16.
Acetylcholine (ACh) contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1) that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs) in V1 of rats during a 4–8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine), nicotinic (mecamylamine), α7 (methyllycaconitine), and NMDA (CPP) receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56%) during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while α7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.  相似文献   

17.
Multichannel recordings of visual evoked potentials (VEPs) have proved to be useful in the evaluation of visual field defects. We studied the topographic distribution of transient VEPs in 15 migraine patients (8 with visual aura and 7 without) and 15 age-matched controls during the migraine-free interval. All the subjects included in the study had normal visual fields. VEPs were recorded from 9 electrodes placed on the posterior scalp. Stimuli were full-field and hemifield reversing square wave grating patterns of medium spatial frequency (4 c/deg). The groups did not show significant differences in latencies and amplitudes of the major components (N70, P100) recorded from the midline. However, migraine patients with visual hemianopic aura showed definite asymmetries in the VEP amplitude distribution. Significantly reduced, absent or polarity-invered VEP responses were recorded ipsilateral to the side of the prodromic visual symptoms. Direct comparison of affected and unaffected hemispheres by partial field stimulation confirmed these findings. According to the VEP cortical generator theory, these abnormalities suggest a functional anomaly consistent with the clinical syndrome and detectable also in the migraine-free interval. None of the migraine patients without aura or the controls showed VEP amplitude asymmetries. We conclude that multichannel VEP recordings may discriminate between different subtypes of migraine and contribute important physiopathological information to the study of this disease.  相似文献   

18.
Evidence of visual-auditory cross-modal plasticity in deaf individuals has been widely reported. Superior visual abilities of deaf individuals have been shown to result in enhanced reactivity to visual events and/or enhanced peripheral spatial attention. The goal of this study was to investigate the association between visual-auditory cross-modal plasticity and speech perception in post-lingually deafened, adult cochlear implant (CI) users. Post-lingually deafened adults with CIs (N = 14) and a group of normal hearing, adult controls (N = 12) participated in this study. The CI participants were divided into a good performer group (good CI, N = 7) and a poor performer group (poor CI, N = 7) based on word recognition scores. Visual evoked potentials (VEP) were recorded from the temporal and occipital cortex to assess reactivity. Visual field (VF) testing was used to assess spatial attention and Goldmann perimetry measures were analyzed to identify differences across groups in the VF. The association of the amplitude of the P1 VEP response over the right temporal or occipital cortex among three groups (control, good CI, poor CI) was analyzed. In addition, the association between VF by different stimuli and word perception score was evaluated. The P1 VEP amplitude recorded from the right temporal cortex was larger in the group of poorly performing CI users than the group of good performers. The P1 amplitude recorded from electrodes near the occipital cortex was smaller for the poor performing group. P1 VEP amplitude in right temporal lobe was negatively correlated with speech perception outcomes for the CI participants (r = -0.736, P = 0.003). However, P1 VEP amplitude measures recorded from near the occipital cortex had a positive correlation with speech perception outcome in the CI participants (r = 0.775, P = 0.001). In VF analysis, CI users showed narrowed central VF (VF to low intensity stimuli). However, their far peripheral VF (VF to high intensity stimuli) was not different from the controls. In addition, the extent of their central VF was positively correlated with speech perception outcome (r = 0.669, P = 0.009). Persistent visual activation in right temporal cortex even after CI causes negative effect on outcome in post-lingual deaf adults. We interpret these results to suggest that insufficient intra-modal (visual) compensation by the occipital cortex may cause negative effects on outcome. Based on our results, it appears that a narrowed central VF could help identify CI users with poor outcomes with their device.  相似文献   

19.
We recorded visual evoked responses in eight patients with Parkinson's disease, using a depth electrode either at or below the stereotactic target in the ventral part of the globus pallidus internus (GPi), which is located immediately dorsal to the optic tract. Simultaneously, scalp visual evoked potentials (VEPs) were also recorded from a mid-occipital electrode with a mid-frontal reference electrode. A black-and-white checkerboard pattern was phase reversed at 1 Hz; check size was 50 min of arc. Pallidal VEPs to full field stimulation showed an initial positive deflection, with a latency of about 50 ms (P50), followed by a negativity with a mean latency of 80 ms (N80). The mean onset latency of P50 was about 30 ms. P50 and N80 were limited to the ventralmost of the GPi and the ansa lenticularis. Left half field stimulation evoked responses in the right ansa lenticularis region while right half field stimulation did not, and vice versa. These potentials thus seemed to originate posterior to the optic chiasm. The scalp VEPs showed typical triphasic wave forms consisting of N75, P100 and N145. The location of the recording electrode in the ansa lenticularis region did not modify the scalp VEP. These results suggest that P50 and N80 are near-field potentials reflecting the compound action potentials from the optic tract. Therefore, N75 of the scalp VEPs may represent an initial response of the striate cortex but not of the lateral geniculate nucleus.  相似文献   

20.
Recognition of joy, anger, and fear by face expression in humans   总被引:1,自引:0,他引:1  
Behavioral and neurophysiological characteristics of a visual recognition of emotions of joy, anger, and fear were studied in 9 young healthy men and 10 women. It was shown that these emotions were identified by subjects with different rate and accuracy; significant gender differences in recognition of anger and fear were found. Recording of visual evoked potentials (VEP) from the occipital (O1/2), medial temporal (T3/4), inferior temporal (T5/6), and frontal (F3/4) areas revealed differences (related with the type of emotion) in the latencies of P150, N180, P250, and N350 waves and in the amplitude of VEP components with the latencies longer than 250 ms. These differences were maximally expressed in T3/4 derivation. The subjects could be divided in two groups. The first group was characterized by increased VEP latencies and higher amplitudes of VEP components later than 250 ms in response to anger (in comparison with other types of emotions). These phenomena were observed in all the derivations but were most pronounced in T3/4. In the second group, only late P250 and N350 components had shorter latencies during recognition of fear. VEP amplitude variations related with the type of emotions were insignificant and were recorded in the occipital and frontal areas. The two groups of subjects also differed in psychoemotional personality characteristics. It is suggested that primary recognition of facial expression takes place in the temporal cortical areas. A possible correlation of electrophysiological indices of emotion recognition with personality traits is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号