首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.  相似文献   

3.
Immune responses in Anopheles gambiae   总被引:7,自引:0,他引:7  
Transmission of human malaria requires a successful development of Plasmodium parasites in anopheline mosquitoes. Insects have developed efficient immune responses to oppose microbial and eukaryotic invaders. The completion of the sequencing of the Anopheles genome provides a wealth of information on putative immune genes that are homologous to components of the Drosophila and mammalian immune systems. In this review, we will summarize our present knowledge of immune responses in the mosquito Anopheles gambiae and attempt a comparative analysis of insect immune systems.  相似文献   

4.
Insects' resistance to infectious agents is essential for their own survival and also for the health of the plant, animal and human populations with which they closely interact. Several of the major human diseases are spread by insects and are rapidly expanding as a result of the development of insecticide resistance in vectors and drug resistance in parasites. A vector insects' permissiveness to a pathogen, and hence the spread of the disease, will largely depend on the compatibility of the molecular interactions between the two species and the capability of the insect immune system to recognize and kill the pathogen. The innate immune system comprises a variety of components and mechanisms that can discriminate between different microorganisms and mount specific responses to control pathogenic infections. An impressive body of knowledge on the insects' innate immunity has been generated from studies in the model organism Drosophila. These studies are now guiding the exploration of the immune system in the vector mosquito of human malaria, Anopheles, and its implication in the elimination of parasites. Anopheles immune responses have been linked to parasite losses and some refractory mosquitoes can kill all parasites through specific defence mechanisms. The recently sequenced Drosophila and Anopheles genomes provide a detailed and comparative view on their immune gene repertoires that in combination with post-genomic analyses is used to further dissect the complex mechanisms of Plasmodium killing in the mosquito.  相似文献   

5.
Malaria transmission between humans depends on the ability of Anopheles mosquitoes to support Plasmodium development. New perspectives in vector control are emerging from understanding the mosquito immune system, which plays critical roles in parasite recognition and killing. A number of factors controlling this process have been recently identified, and key among them is TEP1, a homolog of human complement factor C3 whose binding to the parasite surface targets it for subsequent killing. Here, we review our current knowledge of mosquito factors that respond to Plasmodium infection and elaborate on the activity and mode of action of the TEP1 complement-like pathway.  相似文献   

6.
Mosquito immunity against Plasmodium   总被引:6,自引:0,他引:6  
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.  相似文献   

7.
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail.  相似文献   

8.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

9.
10.
The sporogonic development of the malaria parasite takes place in the mosquito and a wide range of factors modulates it. Among those, the contents of the blood meal can influence the parasite development directly or indirectly through the mosquito response to the infection. We have studied the effect of a second blood meal in previously infected mosquitoes and the effect of anti-sporozoite immune serum on parasite development and mosquito response to the infection. The prevalence and intensity of infection and gene expression of both Plasmodium yoelii and Anopheles stephensi was analyzed. We verified that a second blood meal and its immune status interfere with parasite development and with Plasmodium and mosquito gene expression.  相似文献   

11.
Deciphering molecular interactions between the malaria parasite and its mosquito vector is an emerging area of research that will be greatly facilitated by the recent sequencing of the genomes of Anopheles gambiae mosquito and of various Plasmodium species. So far, most such studies have focused on Plasmodium berghei, a parasite species that infects rodents and is more amenable to studies. Here, we analysed the expression pattern of nine An.gambiae genes involved in immune surveillance during development of the human malaria parasite P.falciparum in mosquitoes fed on parasite-containing blood from patients in Cameroon. We found that P.falciparum ingestion triggers a midgut-associated, as well as a systemic, response in the mosquito, with three genes, NOS, defensin and GNBP, being regulated by ingestion of gametocytes, the infectious stage of the parasite. Surprisingly, we found a different pattern of expression of these genes in the An.gambiae-P.berghei model. Therefore, differences in mosquito reaction against various Plasmodium species may exist, which stresses the need to validate the main conclusions suggested by the P.berghei-An.gambiae model in the P.falciparum-An.gambiae system.  相似文献   

12.
Plasmodium vivax in southern Mexico exhibits different infectivities to 2 local mosquito vectors, Anopheles pseudopunctipennis and Anopheles albimanus. Previous work has tied these differences in mosquito infectivity to variation in the central repeat motif of the malaria parasite's circumsporozoite (csp) gene, but subsequent studies have questioned this view. Here we present evidence that P. vivax in southern Mexico comprised 3 genetic populations whose distributions largely mirror those of the 2 mosquito vectors. Additionally, laboratory colony feeding experiments indicate that parasite populations are most compatible with sympatric mosquito species. Our results suggest that reciprocal selection between malaria parasites and mosquito vectors has led to local adaptation of the parasite. Adaptation to local vectors may play an important role in generating population structure in Plasmodium. A better understanding of coevolutionary dynamics between sympatric mosquitoes and parasites will facilitate the identification of molecular mechanisms relevant to disease transmission in nature and provide crucial information for malaria control.  相似文献   

13.
The mosquito innate immune response is able to clear the majority of Plasmodium parasites. This immune clearance is controlled by a number of regulatory molecules including serine protease inhibitors (serpins). To determine whether such molecules could represent a novel target for a malaria transmission-blocking vaccine, we vaccinated mice with Anopheles gambiae serpin-2. Antibodies against Anopheles gambiae serpin-2 significantly reduced the infection of a heterologous Anopheles species (Anopheles stephensi) by Plasmodium berghei, however this effect was not observed with Plasmodium falciparum. Therefore, this approach of targeting regulatory molecules of the mosquito immune system may represent a novel approach to transmission-blocking malaria vaccines.  相似文献   

14.
Mosquitoes are the major arthropod vectors of human diseases such as malaria and viral encephalitis. However, each mosquito species does not transmit every pathogen, owing to reasons that include specific evolutionary histories, mosquito immune system structure, and ecology. Even a competent vector species for a pathogen displays a wide range of variation between individuals for pathogen susceptibility, and therefore efficiency of disease transmission. Understanding the molecular and genetic mechanisms that determine heterogeneities in transmission efficiency within a vector species could help elaborate new vector control strategies. This review discusses mechanisms of host-defense in Anopheles gambiae, and sources of genetic and ecological variation in the operation of these protective factors. Comparison is made between functional studies using Plasmodium or fungus, and we call attention to the limitations of generalizing gene phenotypes from experiments done in a single genetically simple colony.  相似文献   

15.
Malaria has re-emerged as a global health problem, leading to an increased focus on the cellular and molecular biology of the mosquito Anopheles and the parasite Plasmodium with the goal of identifying novel points of intervention in the parasite life cycle. Anti-parasite defenses mounted by both mammalian hosts and Anopheles can suppress the growth of Plasmodium. Nonetheless, the parasite is able to escape complete elimination in vivo, perhaps by thwarting or co-opting these mechanisms for its own survival, as do numerous other pathogens. Among the defense systems used by the mammalian host against Plasmodium is the synthesis of nitric oxide (NO), catalyzed by an inducible NO synthase (iNOS). Nitric oxide produced by the action of an inducible Anopheles stephensi NO synthase (AsNOS) may be central to the anti-parasitic arsenal of this mosquito. In mammals, iNOS can be modulated by members of the transforming growth factor-beta (TGF-beta) cytokine superfamily. Transforming growth factor-beta is produced as an inactive precursor that is activated following dissociation of certain inhibitory proteins, a process that can be promoted by reaction products of NO as well as by hemin. Ingestion by Anopheles of blood containing Plasmodium initiates parasite development, blood digestion which results in the accumulation of hematin (hemin) in the insect midgut, and induction of both AsNOS and TGF-beta-like (As60A) gene expression in the midgut epithelium. Active mammalian TGF-beta1 can be detected in the A. stephensi midgut up to 48h post-ingestion and latent TGF-beta1 can be activated by midgut components in vitro, a process that is potentiated by NO and that may involve hematin. Further, mammalian TGF-beta1 is perceived as a cytokine by A. stephensi cells in vitro and can alter Plasmodium development in vivo. Bloodfeeding by Anopheles, therefore, results in a juxtaposition of evolutionarily conserved mosquito and mammalian TGF-beta superfamily homologs that may influence transmission dynamics of Plasmodium in endemic regions.  相似文献   

16.
17.
18.
To complete their life cycle, Plasmodium parasites must survive the environment in the insect host, cross multiple barriers including epithelial layers, and avoid destruction by the mosquito immune system. Completion of the Anopheles gambiae and Plasmodium falciparum genomes has opened the opportunity to apply high throughput methods to the analysis of gene function. The burst of information generated by these approaches and the use of molecular markers to investigate the cell biology of these interactions is broadening our understanding of this complex system. This review discusses our current understanding of the critical interactions that take place during the journey of Plasmodium through the mosquito host, with special emphasis on the responses of midgut epithelial cells to parasite invasion.  相似文献   

19.
20.
For malaria transmission to occur, Plasmodium sporozoites must infect the salivary glands of their mosquito vectors. This study reports that Anopheles gambiae SRPN6 participates in a local salivary gland epithelial response against the rodent malaria parasite, Plasmodium berghei . We showed previously that SRPN6, an immune inducible midgut invasion marker, influences ookinete development. Here we report that SRPN6 is also specifically induced in salivary glands with the onset of sporozoite invasion. The protein is located in the basal region of epithelial cells in proximity to invading sporozoites. Knockdown of SRPN6 during the late phase of sporogony by RNAi has no effect on oocyst rupture but significantly increases the number of sporozoites present in salivary glands. Despite several differences between the passage of Plasmodium through the midgut and the salivary glands, this study identifies a striking overlap in the molecular responses of these two epithelia to parasite invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号