首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of cells with Classical swine fever virus (CSFV) is mediated by the interaction of envelope glycoprotein E(rns) and E2 with the cell surface. In this report we studied the role of the cell surface glycoaminoglycans (GAGs), chondroitin sulfates A, B, and C (CS-A, -B, and -C), and heparan sulfate (HS) in the initial binding of CSFV strain Brescia to cells. Removal of HS from the surface of swine kidney cells (SK6) by heparinase I treatment almost completely abolished infection of these cells with virus that was extensively passaged in swine kidney cells before it was cloned (clone C1.1.1). Infection with C1.1.1 was inhibited completely by heparin (a GAG chemically related to HS but sulfated to a higher extent) and by dextran sulfate (an artificial highly sulfated polysaccharide), whereas HS and CS-A, -B, and -C were unable to inhibit infection. Bound C1.1.1 virus particles were released from the cell surface by treatment with heparin. Furthermore, C1.1.1 virus particles and CSFV E(rns) purified from insect cells bound to immobilized heparin, whereas purified CSFV E2 did not. These results indicate that initial binding of this virus clone is accomplished by the interaction of E(rns) with cell surface HS. In contrast, infection of SK6 cells with virus clones isolated from the blood of an infected pig and minimally passaged in SK6 cells was not affected by heparinase I treatment of cells and the addition of heparin to the medium. However, after one additional round of amplification in SK6 cells, infection with these virus clones was affected by heparinase I treatment and heparin. Sequence analysis of the E(rns) genes of these virus clones before and after amplification in SK6 cells showed that passage in SK6 cells resulted in a change of an Ser residue to an Arg residue in the C terminus of E(rns) (amino acid 476 in the polyprotein of CSFV). Replacement of the E(rns) gene of an infectious DNA copy of C1.1.1 with the E(rns) genes of these virus variants proved that acquisition of this Arg was sufficient to alter an HS-independent virus to a virus that uses HS as an E(rns) receptor.  相似文献   

2.
We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB(+) bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepADelta3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.  相似文献   

3.
The pestivirus envelope glycoprotein E(rns) has RNase activity and therefore was suspected to enter cells to cleave RNA. The protein contains an RNase domain with a C-terminal extension, which shows homology with a membrane-active peptide. The modular architecture and the C-terminal homology suggested that the C terminus could be responsible for the presumed translocation. Peptides corresponding to the C-terminal domain of E(rns) and also the homologous L3 loop of ribotoxin II were indeed able to translocate across the eukaryotic cell membrane and were targeted to the nucleoli. The entire E(rns) protein was also able to translocate into the cell. Furthermore, other labeled proteins and even active enzymes could be transported inside the cell when they were attached to the C-terminal E(rns) peptide. Translocation was energy-independent and not mediated by a protein receptor. The peptides showed no specificity for cell type or species.  相似文献   

4.
猪瘟病毒 (CSFV)囊膜结构糖蛋白Erns(gp4 8)是诱导机体产生中和抗体及激发保护性免疫应答的第二抗原蛋白。E2和Erns与细胞表面受体的相互作用介导CSFV感染细胞的过程。Erns具有RNA酶活性 ,影响病毒自身复制并涉及对病毒的中和效应。采用抗CSFValfortT櫣bingen毒株Erns糖蛋白的 1B5 ,b4_2 2和 2 4 16单克隆中和抗体 ,筛选噬菌体展示的 12肽随机肽库 ,进行Erns中和表位的鉴定和比较 ,获得分别针对 1B5、b4_2 2和 2 4 16单克隆抗体的 3个主要中和表 (拟 )位基序WxNxxP、DKNR (Q)G和A(T)CxYxKN ,分别定位于Erns的 35 1位~ 35 6位或 348位~ 35 0位、384位~ 386及 32 2位~ 32 3位、380位~ 386位氨基酸区域。分析表 (拟 )位基序与单克隆抗体的免疫反应性差异。b4_2 2和 2 4 16单克隆抗体识别基序存在共有序列KN ,识别Erns中的相似抗原区 ,但其侧翼序列及免疫印迹、免疫荧光抗体抑制试验结果均存在显著差异  相似文献   

5.
A late stage in assembly of alphaviruses within infected cells is thought to be directed by interactions between the nucleocapsid and the cytoplasmic domain of the E2 protein, a component of the viral E1/E2 glycoprotein complex that is embedded in the plasma membrane. Recognition between the nucleocapsid protein and the E2 protein was explored in solution using NMR spectroscopy, as well as in binding assays using a model phospholipid membrane system that incorporated a variety of Sindbis virus E2 cytoplasmic domain (cdE2) and capsid protein constructs. In these binding assays, synthetic cdE2 peptides were reconstituted into phospholipid vesicles to simulate the presentation of cdE2 on the inner leaflet of the plasma membrane. Results from these binding assays showed a direct interaction between a peptide containing the C-terminal 16 amino acids of the cdE2 sequence and a Sindbis virus capsid protein construct containing amino acids 19-264. Additional experiments that probed the sequence specificity of this cdE2-capsid interaction are also described. Further binding assays demonstrated an interaction between the 19-264 capsid protein and artificial vesicles containing neutral or negatively charged phospholipids, while capsid protein constructs with N-terminal truncations displayed either little or no affinity for such vesicles. The membrane-binding property of the capsid protein suggests that the membrane may play an active role in alphavirus assembly. The results are consistent with an assembly process involving an initial membrane association, whereby an association with E2 glycoprotein further enhances capsid binding to facilitate membrane envelopment of the nucleocapsid for budding. Collectively, these experiments elucidate certain requirements for the binding of Sindbis virus capsid protein to the cytoplasmic domain of the E2 glycoprotein, a critical event in the alphavirus maturation pathway.  相似文献   

6.
7.
An animal system of inducible activation of protein fusions with the binding domain of glucocorticoid receptor (BDGR) was tested in Arabidopsis thaliana by monitoring dexamethasone (DEX)-induced nuclear targeting of reporter constructs. Two constructs containing green fluorescent protein (GFP), human homeobox protein Hanf-1 and Xenopus laevis BDGR were used, GFP/Hanf-1/BDGR and GFP/BDGR. The control construct contained GFP alone. In the absence of DEX both fusion proteins were uniformly distributed in the cytoplasm of root cells, but showed strong association with plastids in plant aerial parts. DEX treatment of roots prompted a strong and reversible nuclear accumulation of GFP/Hanf-1/BDGR, but not GFP/BDGR. Thus, in roots, the specific nuclear translocation of GFP/Hanf-1/BDGR was driven by Hanf-1 and tightly regulated by BDGR. However, in plant aerial parts treated with DEX, nuclear translocation of GFP/Hanf-1/BDGR was observed only in a few cases, and most part of the fusion protein was incorrectly and irreversibly targeted to plastids. Protease X digestion of isolated chloroplasts showed that BDGR fusion proteins were translocated into the chloroplast envelope and bound to envelope membranes, probably due to association with the chloroplast import apparatus. Thus, for efficient use of the glucocorticoid-inducible system in plants, it will be necessary to modify BDGR structure to prevent incorrect targeting of fusion proteins.  相似文献   

8.
E(rns) is a structural glycoprotein of pestiviruses found to be attached to the virion and to membranes within infected cells via its COOH terminus, although it lacks a hydrophobic anchor sequence. The COOH-terminal sequence was hypothesized to fold into an amphipathic alpha-helix. Alanine insertion scanning revealed that the ability of the E(rns) COOH terminus to bind membranes is considerably reduced by the insertion of a single amino acid at a wide variety of positions. Mutations decreasing the hydrophobicity of the apolar face of the putative helix led to reduction of membrane association. Proteinase K protection assays showed that E(rns) translated in vitro in the presence of microsomal membranes was protected, whereas a mutant with an artificial transmembrane region and a short cytosolic tag was shortened by the protease treatment. A tag fused to the COOH terminus of wild type E(rns) was not accessible for antibodies within digitonin-permeabilized cells, but the variant with the tag located downstream of the artificial transmembrane region was detected under the same conditions. These results are in accordance with the model that the COOH-terminal membrane anchor of E(rns) represents an amphipathic helix embedded in plane into the membrane. The integrity of the membrane anchor was found to be important for recovery of infectious virus.  相似文献   

9.
Nakajima H  Shimbara N  Shimonishi Y  Mimori T  Niwa S  Saya H 《Gene》2000,260(1-2):121-131
The protein invasin expressed on the cell surface of the pathogenic bacteria Yersinia pseudotuberculosis mediates the entry of this bacterium into cultured mammalian cells. We have developed a system for expression of random peptides on the cell surface of Escherichia coli (E. coli) by creation of a fusion hybrid between a peptide and the invasin protein. The fusion protein constructs consist of part of the outer membrane domain of the invasin protein, six proline spacers, and a decamer of random peptides flanked by cysteine residues (CX(10)C). Peptides were constitutively expressed on the cell surface in the resulting random decamer peptide library, which we designated as ESPEL (E. coli Surface Peptide Expression Library). The ESPEL was systematically screened for its binding affinity toward human cultured cells. Several bacterial clones were identified whose binding to human cells was mediated by peptides expressed on the bacterial cell surface. Flow cytometric analysis showed that both the identified bacterial clones and these corresponding chemically synthesized peptides bound to human cells specifically. The techniques described provide a new method that uses E. coli random peptide library to select targeting peptides for mammalian cells without any knowledge of the human cellular receptors.  相似文献   

10.
BACKGROUND: Mast cells are primary mediators of allergic inflammation. Antigen-mediated crosslinking of their cell surface immunoglobulin E (IgE) receptors results in degranulation and the release of proinflammatory mediators including histamine, tumor necrosis factor-alpha, and leukotrienes. METHODS: Mast cells were stimulated to degranulate by using either IgE crosslinking or ionophore treatment. Exogenously added annexin-V was used to stain exocytosing granules, and the extent of binding was measured flow cytometrically. Release of the enzyme beta-hexosaminidase was used for population-based measurements of degranulation. Two known inhibitors of degranulation, the phosphatidylinositol 3 kinase inhibitor wortmannin and overexpression of a mutant rab3d protein, were used as controls to validate the annexin-V binding assay. RESULTS: Annexin-V specifically bound to mast cell granules exposed after stimulation in proportion to the extent of degranulation. Annexin-V binding was calcium dependent and was blocked by phosphatidylserine containing liposomes, consistent with specific binding to this membrane lipid. Visualization of annexin-V staining showed granular cell surface patches that colocalized with the exocytic granule marker VAMP-green fluorescent protein (GFP). Wortmannin inhibited both annexin-V binding and beta-hexosaminidase release in RBL-2H3 cells, as did the expression of a dominant negative rab3d mutant protein. CONCLUSIONS: The annexin-V binding assay represents a powerful new flow cytometric method to monitor mast cell degranulation for functional analysis.  相似文献   

11.
Surprisingly little is known about the physical environment inside a prokaryotic cell. Knowledge of the rates at which proteins and other cell components can diffuse is crucial for the understanding of a cell as a physical system. There have been numerous measurements of diffusion coefficients in eukaryotic cells by using fluorescence recovery after photobleaching (FRAP) and related techniques. Much less information is available about diffusion coefficients in prokaryotic cells, which differ from eukaryotic cells in a number of significant respects. We have used FRAP to observe the diffusion of green fluorescent protein (GFP) in cells of Escherichia coli elongated by growth in the presence of cephalexin. GFP was expressed in the cytoplasm, exported into the periplasm using the twin-arginine translocation (Tat) system, or fused to an integral plasma membrane protein (TatA). We show that TatA-GFP diffuses in the plasma membrane with a diffusion coefficient comparable to that of a typical eukaryotic membrane protein. A previous report showed a very low rate of protein diffusion in the E. coli periplasm. However, we measured a GFP diffusion coefficient only slightly smaller in the periplasm than that in the cytoplasm, showing that both cell compartments are relatively fluid environments.  相似文献   

12.
The production of recombinant membrane proteins for structural and functional studies remains technically challenging due to low levels of expression and the inherent instability of many membrane proteins once solubilized in detergents. A protocol is described that combines ligation independent cloning of membrane proteins as GFP fusions with expression in Escherichia coli detected by GFP fluorescence. This enables the construction and expression screening of multiple membrane protein/variants to identify candidates suitable for further investment of time and effort. The GFP reporter is used in a primary screen of expression by visualizing GFP fluorescence following SDS polyacrylamide gel electrophoresis (SDS-PAGE). Membrane proteins that show both a high expression level with minimum degradation as indicated by the absence of free GFP, are selected for a secondary screen. These constructs are scaled and a total membrane fraction prepared and solubilized in four different detergents. Following ultracentrifugation to remove detergent-insoluble material, lysates are analyzed by fluorescence detection size exclusion chromatography (FSEC). Monitoring the size exclusion profile by GFP fluorescence provides information about the mono-dispersity and integrity of the membrane proteins in different detergents. Protein: detergent combinations that elute with a symmetrical peak with little or no free GFP and minimum aggregation are candidates for subsequent purification. Using the above methodology, the heterologous expression in E. coli of SED (shape, elongation, division, and sporulation) proteins from 47 different species of bacteria was analyzed. These proteins typically have ten transmembrane domains and are essential for cell division. The results show that the production of the SEDs orthologues in E. coli was highly variable with respect to the expression levels and integrity of the GFP fusion proteins. The experiment identified a subset for further investigation.  相似文献   

13.
A 120-kDa protein was purified from brush border membrane vesicles of the tortricid moth Epiphyas postvittana (Walker) based both on its activity as an aminopeptidase and the ability to bind the Bacillus thuringiensis delta-endotoxin Cry1Ac. The purified enzyme had a pI of 5.6 and was a leucine aminopeptidase, with some isoleucine, phenylalanine and tryptophan aminopeptidase activity. Further characterisation showed that the protein was also able to bind Cry1Ba. During purification, the molecular weight of the protein decreased from 120 to 115 kDa due to the loss of a glycophosphatidinyl anchor. The protein was N-terminally sequenced and, using this information and conserved regions within other insect aminopeptidase-N (APN) sequences, redundant primers were designed to amplify the aminopeptidase coding sequence from E. postvittana midgut cDNA. The predicted protein sequence from the full-length cDNA was most closely related to the APN protein sequence from Heliothis virescens (61% identity) and shared other features of insect APNs including a Zn(2+) binding site motif and four conserved cysteines. The E. postvittana was expressed in Sf9 cells using baculovirus, yielding a protein of molecular weight 130 kDa, but with unchanged N-terminal sequence. Purified recombinant protein bound both Cry1Ac and Cry1Ba by ligand blot assays. However, despite the protein being expressed on the external surface of the Sf9 cells, it bound neither Cry1Ac nor Cry1Ba in vivo.  相似文献   

14.
15.
A series of fusion protein constructs were designed to investigate the contribution of secretory nascent chains to regulation of the ribosome–membrane junction in the mammalian endoplasmic reticulum. As a component of these studies, the membrane topology of the signal sequence was determined at stages of protein translocation immediately after targeting and before signal sequence cleavage. Truncated translation products were used to delimit the analysis to defined stages of translocation.

In a study of secretory protein precursors, formation of a protease-resistant ribosome–membrane junction, currently thought to define the pathway of the translocating nascent chain, was observed to be precursor- and stage-dependent. Analysis of the binding of early intermediates indicated that the nascent chain was bound to the membrane independent of the ribosome, and that the binding was predominately electrostatic. The membrane topology of the signal sequence was determined as a function of the stage of translocation, and was found to be identical for all assayed intermediates. Unexpectedly, the hydrophobic core of the signal sequence was observed to be accessible to the cytosolic face of the membrane at stages of translocation immediately after targeting as well as stages before signal sequence cleavage. Removal of the ribosome from bound intermediates did not disrupt subsequent translocation, suggesting that the active state of the protein-conducting channel is maintained in the absence of the bound ribosome. A model describing a potential mode of regulation of the ribosome–membrane junction by the nascent chain is presented.

  相似文献   

16.
JAK/STAT signaling is essential for a wide range of developmental processes in Drosophila melanogaster. The mechanism by which the JAK/STAT pathway contributes to these processes has been the subject of recent investigation. However, a reporter that reflects activity of the JAK/STAT pathway in all Drosophila tissues has not yet been developed. By placing a fragment of the Stat92E target gene Socs36E, which contains at least two putative Stat92E binding sites, upstream of GFP, we generated three constructs that can be used to monitor JAK/STAT pathway activity in vivo. These constructs differ by the number of Stat92E binding sites and the stability of GFP. The 2XSTAT92E-GFP and 10XSTAT92E-GFP constructs contain 2 and 10 Stat92E binding sites, respectively, driving expression of enhanced GFP, while 10XSTAT92E-DGFP drives expression of destabilized GFP. We show that these reporters are expressed in the embryo in an overlapping pattern with Stat92E protein and in tissues where JAK/STAT signaling is required. In addition, these reporters accurately reflect JAK/STAT pathway activity at larval stages, as their expression pattern overlaps that of the activating ligand unpaired in imaginal discs. Moreover, the STAT92E-GFP reporters are activated by ectopic JAK/STAT signaling. STAT92E-GFP fluorescence is increased in response to ectopic upd in the larval eye disc and mis-expression of the JAK kinase hopscotch in the adult fat body. Lastly, these reporters are specifically activated by Stat92E, as STAT92E-GFP reporter expression is lost cell-autonomously in stat92E homozygous mutant tissue. In sum, we have generated in vivo GFP reporters that accurately reflect JAK/STAT pathway activation in a variety of tissues. These reporters are valuable tools to further investigate and understand the role of JAK/STAT signaling in Drosophila.  相似文献   

17.
The minimum structure of the Raf-1 serine/threonine kinase that recognizes active Ras was used to create a green fluorescent fusion protein (GFP) for monitoring Ras activation in live cells. In spite of its ability to bind activated Ras in vitro, the Ras binding domain (RBD) of Raf-1 (Raf-1[51-131]GFP) failed to detect Ras in Ras-transformed NIH 3T3 fibroblasts and required the addition of the cysteine-rich domain (CRD) (Raf-1[51-220]GFP) to show clear localization to plasma membrane ruffles. In normal NIH 3T3 cells, (Raf-1[51-220]GFP) showed minimal membrane localization that was enhanced after stimulation with platelet-derived growth factor or phorbol-12-myristate-13-acetate. Mutations within either the RBD (R89L) or CRD (C168S) disrupted the membrane localization of (Raf-1[51-220]GFP), suggesting that both domains contribute to the recruitment of the fusion protein to Ras at the plasma membrane. The abilities of the various constructs to localize to the plasma membrane closely correlated with their inhibitory effects on mitogen-activated protein kinase kinase1 and mitogen-activated protein kinase activation. Membrane localization of full-length Raf-1-GFP was less prominent than that of (Raf-1[51-220]GFP) in spite of its strong binding to RasV12 and potent activation of mitogen-activated protein kinase. These finding indicate that both RBD and CRD are necessary to recruit Raf-1 to active Ras at the plasma membrane, and that these domains are not fully exposed in the Raf-1 molecule. Visualization of activated Ras in live cells will help to better understand the dynamics of Ras activation under various physiological and pathological conditions.  相似文献   

18.
We have developed a periplasmic fluorescent reporter protein suitable for high-throughput membrane protein topology analysis in Escherichia coli. The reporter protein consists of a single chain (scFv) antibody fragment that binds to a fluorescent hapten conjugate with high affinity. Fusion of the scFv to membrane protein sites that are normally exposed in the periplasmic space tethers the scFv onto the inner membrane. Following permealization of the outer membrane to allow diffusion of the fluorescent hapten into the periplasm, binding to the anchored scFv renders the cells fluorescent. We show that cell fluorescence is an accurate and sensitive reporter of the location of residues within periplasmic loops. For topological analysis, a set of nested deletions in the membrane protein gene is employed to construct two libraries of gene fusions, one to the scFvand one to the cytoplasmic reporter green fluorescent protein (GFP). Fluorescent clones are isolated by flow cytometry and the sequence of the fusion junctions is determined to identify amino acid residues within periplasmic and cytoplasmic loops, respectively. We applied this methodology to the topology analysis of E. coli TatC protein for which previous studies had led to conflicting results. The ease of screening libraries of fusions by flow cytometry enabled the rapid identification of almost 90 highly fluorescent scFv and GFP fusions, which, in turn, allowed the fine mapping of TatC membrane topology.  相似文献   

19.
Background information. In a previous study, we showed that GFP (green fluorescent protein) fused to the N‐terminal 238 amino acids of the mammalian LBR (lamin B receptor) localized to the NE (nuclear envelope) when expressed in the plant Nicotiana tabacum. The protein was located in the NE during interphase and migrated with nuclear membranes during cell division. Targeting and retention of inner NE proteins requires several mechanisms: signals that direct movement through the nuclear pore complex, presence of a transmembrane domain or domains and retention by interaction with nuclear or nuclear‐membrane constituents. Results. Binding mutants of LBR—GFP were produced to investigate the mechanisms for the retention of LBR in the NE. FRAP (fluorescence recovery after photobleaching) analysis of mutant and wild‐type constructs was employed to examine the retention of LBR—GFP in the plant NE. wtLBR—GFP (wild‐type LBR—GFP) was shown to have significantly lower mobility in the NE than the lamin‐binding domain deletion mutant, which showed increased mobility in the NE and was also localized to the endoplasmic reticulum and punctate structures in some cells. Modification of the chromatin‐binding domain resulted in the localization of the protein in nuclear inclusions, in which it was immobile. Conclusions. As expression of truncated LBR—GFP in plant cells results in altered targeting and retention compared with wtLBR—GFP, we conclude that plant cells can recognize the INE (inner NE)‐targeting motif of LBR. The altered mobility of the truncated protein suggests that not only do plant cells recognize this signal, but also have nuclear proteins that interact weakly with LBR.  相似文献   

20.
The Green Fluorescent Protein (GFP) is a useful marker to trace the expression of cellular proteins. However, little is known about changes in protein interaction properties after fusion to GFP. In this study, we present evidence for a binding affinity of chimeric cadmium-binding green fluorescent proteins to lipid membrane. This affinity has been observed in both cellular membranes and artificial lipid monolayers and bilayers. At the cellular level, the presence of Cd-binding peptide promoted the association of the chimeric GFP onto the lipid membrane, which declined the fluorescence emission of the engineered cells. Binding affinity to lipid membranes was further investigated using artificial lipid bilayers and monolayers. Small amounts of the chimeric GFP were found to incorporate into the lipid vesicles due to the high surface pressure of bilayer lipids. At low interfacial pressure of the lipid monolayer, incorporation of the chimeric Cd-binding GFP onto the lipid monolayer was revealed. From the measured lipid isotherms, we conclude that Cd-binding GFP mediates an increase in membrane fluidity and an expansion of the surface area of the lipid film. This evidence was strongly supported by epifluorescence microscopy, showing that the chimeric Cd-binding GFP preferentially binds to fluid-phase areas and defect parts of the lipid monolayer. All these findings demonstrate the hydrophobicity of the GFP constructs is mainly influenced by the fusion partner. Thus, the example of a metal-binding unit used here shines new light on the biophysical properties of GFP constructs.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号