首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The purpose of this study is to examine whether or not the application of independent component analysis (ICA) is useful for separation of motor unit action potential trains (MUAPTs) from the multi-channel surface EMG (sEMG) signals. In this study, the eight-channel sEMG signals were recorded from tibialis anterior muscles during isometric dorsi-flexions at 5%, 10%, 15% and 20% maximal voluntary contraction. Recording MUAP waveforms with little time delay mounted between the channels were obtained by vertical sEMG channel arrangements to muscle fibers. The independent components estimated by FastICA were compared with the sEMG signals and the principal components calculated by principal component analysis (PCA). From our results, it was shown that FastICA could separate groups of similar MUAP waveforms of the sEMG signals separated into each independent component while PCA could not sufficiently separate the groups into the principal components. A greater reduction of interferences between different MUAP waveforms was demonstrated by the use of FastICA. Therefore, it is suggested that FastICA could provide much better discrimination of the properties of MUAPTs for sEMG signal decomposition, i.e. waveforms, discharge intervals, etc., than not only PCA but also the original sEMG signals.  相似文献   

2.
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered.A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5 s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test.The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR.  相似文献   

3.
Previous studies have reported how different populations of motor units (MUs) can be recruited during dynamic and locomotor tasks. It was hypothesised that the higher-threshold units would contribute higher-frequency components to the sEMG spectra due to their faster conduction velocities, and thus recruitment patterns that increase the proportion of high-threshold units active would lead to higher-frequency elements in the sEMG spectra. This idea was tested by using a model of varying recruitment coupled to a three-layer volume conductor model to generate a series of sEMG signals. The recruitment varied from (A) orderly recruitment where the lowest-threshold MUs were initially activated and higher-threshold MUs were sequentially recruited as the contraction progressed, (B) a recurrent inhibition model that started with orderly recruitment, but as the higher-threshold units were activated they inhibited the lower-threshold MUs (C) nine models with intermediate properties that were graded between these two extremes. The sEMG was processed using wavelet analysis and the spectral properties quantified by their mean frequency, and an angle θ that was determined from the principal components of the spectra. Recruitment strategies that resulted in a greater proportion of faster MUs being active had a significantly lower θ and higher mean frequency.  相似文献   

4.
空间独立成分分析实现fMRI信号的盲分离   总被引:7,自引:1,他引:6  
独立成分分析(ICA)在功能核磁共振成像(fMRI)技术中的应用是近年来人们关注的一个热点。简要介绍了空间独立成分分析(SICA)的模型和方法,将fMRI信号分析看作是一种盲源分离问题,用快速算法实现fMRI信号的盲源分离。对fMRI信号的研究大多是在假定已知事件相关时间过程曲线的情况下,利用相关性分析得到脑的激活区域。在不清楚有哪几种因素对fMRI信号有贡献、也不清楚其时间过程曲线的情况下,用SICA可以对fMRI信号进行盲源分离,提取不同独立成分得到任务相关成分、头动成分、瞬时任务相关成分、噪声干扰、以及其它产生fMRI信号的多种源信号。  相似文献   

5.
The identification of the motor unit (MU) innervation zone (IZ) using surface electromyographic (sEMG) signals detected on the skin with a linear array or a matrix of electrodes has been recently proposed in the literature. However, an analysis of the reliability of this procedure and, therefore, of the suitability of the sEMG signals for this purpose has not been reported.The purpose of this work is to describe the intra and inter-rater reliability and the suitability of surface EMG in locating the innervation zone of the upper trapezius muscle.Two operators were trained on electrode matrix positioning and sEMG signal analysis. Ten healthy subjects, instructed to perform a series of isometric contractions of the upper trapezius muscle participated in the study. The two operators collected sEMG signals and then independently estimated the IZ location through visual analysis.Results showed an almost perfect agreement for intra-rater and inter-rater reliability. The constancy of IZ location could be affected by the factors reflecting the population of active MUs and their IZs, including: the contraction intensity, the acquisition period analyzed, the contraction repetition. In almost all cases the IZ location shift due to these factors did not exceed 4 mm. Results generalization to other muscles should be made with caution.  相似文献   

6.
A realistic model for two synchronized motor unit action potential trains (MUAPT) is presented in which the variability of the time difference between corresponding action potentials (hereafter denoted by delay) is taken into account. Specifically, this delay is modeled as a continuous random variable that may assume both positive and negative values.Expressions are derived for the auto- and cross-power spectra of two such trains using their relations with the auto- and cross-correlation functions, respectively, with which they form Fourier transform pairs.The results show that the auto- and the cross-power spectra of two such synchronized MUAPTs differ from the auto- and the cross-spectra of two independent MUAPTs. The contribution of the statistics of the interpulse intervals to one of the autopower spectra is smaller and the cross-power spectra no longer reduce to a Dirac -function at the origin but are now determined by the other auto-power spectrum and by the Fourier transform of the density function associated with the time difference between corresponding action potentials. As a consequence of this change in the cross-power spectra synchronization leads to an absolute increase of power at low frequencies and to a relative decrease of power at high frequencies.The results are then generalized to electromyograms (EMG) composed of more than just two MUAPTs and illustrated with simulated power spectra with which the theory shows excellent agreement.  相似文献   

7.
基于时间聚类分析和独立成分分析的癫痫fMRI盲分析方法   总被引:3,自引:0,他引:3  
提出了一种基于时间聚类分析和独立成分分析的癫痫fMRI数据盲分析方法,并将两种方法有效联合,提取发作间期的癫痫fMRI激活时空信息.该方法首先由时间聚类分析得到与激活相关的时间峰度特征曲线,以此特征作为时间参考信息;再由空间独立成分分析分解fMRI信号得到空间独立成分;最后将每个独立成分所对应的时间曲线与参考曲线做相关分析提取相应脑激活图.提出的方法无需任何关于癫痫fMRI的先验假设信息,有效解决了独立成分的排序问题,实现了对数据的盲分析.仿真试验结果阐明了这一方法的有效性及可靠性,对癫痫数据的试验结果显示空间定位准确性优于统计参数图方法.  相似文献   

8.
Recent research has demonstrated that surface electromyography (sEMG) signals have non-Gaussianity and non-linearity properties. It is known that more muscle motor units are recruited and firing rates (FRs) increase as exertion increases. A hypothesis was proposed that the Gaussianity test (S g) and linearity test (S ?) levels of sEMG signals are associated with the number of active motor units (nMUs) and the FR. The hypothesis has only been preliminarily discussed in experimental studies. We used a simulation sEMG model involving spatial (active MUs) and temporal (three FRs) information to test the hypothesis. Higher-order statistics (HOS) from the bi-frequency domain were used to perform S g and S ?. Multivariate covariance analysis and a correlation test were employed to determine the nMUs-S g relationship and the nMUs-S ? relationship. Results showed that nMUs, the FR, and the interaction of nMUs and the FR all influenced the S g and S ? values. The nMUs negatively correlated to both the S g and S ? values. That is, at the three FRs, sEMG signals tended to a more Gaussian and linear distribution as exertion and nMUs increased. The study limited experiment factors to the sEMG non-Gaussianity and non-linearity levels. The study quantitatively described nMUs and the FR of muscle that are not directly available from experiments. Our finding has guiding significance for muscle capability assessment and prosthetic control.  相似文献   

9.
The identification of a number of active muscles during complex actions is the useful information to identify different gestures. Biosignals such as surface electromyogram (sEMG) are a result of the summation of electrical activity of a number of sources. The complexity of the anatomy and actions makes it difficult in identifying the number of active sources from the multiple channel recordings. This paper addresses two applications of independent component analysis (ICA) on sEMG: the first one is to evaluate the use of ICA for the separation of bioelectric signals when the number of active sources may not be known. The second application is to identify complex hand gestures using decomposed sEMG. The theoretical analysis and experimental results demonstrate that the ICA is suitable for the separation of myoelectric signals. The results identify the usage of ICA for identifying complex gestures.  相似文献   

10.
The identification of a number of active muscles during complex actions is the useful information to identify different gestures. Biosignals such as surface electromyogram (sEMG) are a result of the summation of electrical activity of a number of sources. The complexity of the anatomy and actions makes it difficult in identifying the number of active sources from the multiple channel recordings. This paper addresses two applications of independent component analysis (ICA) on sEMG: the first one is to evaluate the use of ICA for the separation of bioelectric signals when the number of active sources may not be known. The second application is to identify complex hand gestures using decomposed sEMG. The theoretical analysis and experimental results demonstrate that the ICA is suitable for the separation of myoelectric signals. The results identify the usage of ICA for identifying complex gestures.  相似文献   

11.
Surface electromyogram (EMG) detected by electrode arrays along the muscle fibre direction can be approximated by the sum of propagating and non propagating components. A technique to separate propagating and non propagating components in surface EMG signals is developed. The first step is an adaptive filter, which allows obtaining an estimation of the delay between signals detected at different channels and a first estimate of propagating and non propagating components; the second step is used to optimise the estimation of the two components. The method is applicable to signals with one propagating and one non propagating component. It was optimised on simulated signals, and then applied to single motor unit action potentials (MUAP) and to electrically elicited EMG (M-waves).

The new method was first tested on phenomenological signals constituted by the sum of a propagating and a non propagating signal and then applied to simulated and experimental EMG signals. Simulated signals were generated by a cylindrical, layered volume conductor model. Experimental signals were monopolar surface EMG signals collected from the abductor pollicis brevis muscle and M-waves recorded during transcutaneous electrical stimulation of the biceps muscle. The technique may find different applications: in single motor unit (MU) studies (a) for decreasing the variability and bias of CV estimates due to the presence of the non propagating components, (b) for estimating automatically the length of the muscle fibres from only three detected channels and (c) for removal of the stimulation artifact M-waves.  相似文献   


12.
Principal Component Analysis (PCA) is a classical technique in statistical data analysis, feature extraction and data reduction, aiming at explaining observed signals as a linear combination of orthogonal principal components. Independent Component Analysis (ICA) is a technique of array processing and data analysis, aiming at recovering unobserved signals or 'sources' from observed mixtures, exploiting only the assumption of mutual independence between the signals. The separation of the sources by ICA has great potential in applications such as the separation of sound signals (like voices mixed in simultaneous multiple records, for example), in telecommunication or in the treatment of medical signals. However, ICA is not yet often used by statisticians. In this paper, we shall present ICA in a statistical framework and compare this method with PCA for electroencephalograms (EEG) analysis.We shall see that ICA provides a more useful data representation than PCA, for instance, for the representation of a particular characteristic of the EEG named event-related potential (ERP).  相似文献   

13.
MOTIVATION: Metabolite fingerprinting is a technology for providing information from spectra of total compositions of metabolites. Here, spectra acquisitions by microchip-based nanoflow-direct-infusion QTOF mass spectrometry, a simple and high throughput technique, is tested for its informative power. As a simple test case we are using Arabidopsis thaliana crosses. The question is how metabolite fingerprinting reflects the biological background. In many applications the classical principal component analysis (PCA) is used for detecting relevant information. Here a modern alternative is introduced-the independent component analysis (ICA). Due to its independence condition, ICA is more suitable for our questions than PCA. However, ICA has not been developed for a small number of high-dimensional samples, therefore a strategy is needed to overcome this limitation. RESULTS: To apply ICA successfully it is essential first to reduce the high dimension of the dataset, by using PCA. The number of principal components determines the quality of ICA significantly, therefore we propose a criterion for estimating the optimal dimension automatically. The kurtosis measure is used to order the extracted components to our interest. Applied to our A. thaliana data, ICA detects three relevant factors, two biological and one technical, and clearly outperforms the PCA.  相似文献   

14.
The superposition principle suggests that motor commands can be divided into individually controlled components that summate to produce complex motor actions. Previous studies have examined the validity of this principle in human grasping by changing moments acting on an object about a single anatomically-defined axis and asking subjects to hold the object while their forearm was constrained. Superposition was reflected as separate control of the grip force and moments required to prevent object slip and maintain orientation. The objective of this study was to examine the robustness of this principle by: 1) expanding the range of tasks to include those where moments act on an object with respect to moment arms not necessarily in line with the anatomically-defined axes; 2) asking subjects to hold the object in an unconstrained manner. Ten subjects were asked to lift and hold an object vertically under eighteen moment conditions. Force and moment data from all digits were analysed using principal components analysis (PCA). Different PCAs were run for variable sets corresponding to moments about the long axis of the forearm (M(x)), the vertical (M(y)) and grip (M(z)) axes, and for the entire dataset (M(3D)). The PCA showed grip force and moment variables on separate PCs for the M(x), M(y), and M(3D) variable sets. The M(3D) PCA also showed a separation of variables corresponding to moments about each anatomically-defined axis. Thus, the present results show that the superposition principle holds during natural manipulation of an object experiencing external moments outside the anatomically-defined axes.  相似文献   

15.
Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison).  相似文献   

16.
Group I muscle afferents modulate the excitability of motor neurons through excitatory and inhibitory spinal reflexes. Spinal reflex relationships between various muscle pairs are well described in experimental animals but not in the human upper limb, which exhibits a fine control of movement. In the present study, spinal reflexes between the extensor carpi radialis (ECR) and pronator teres (PT) muscles were examined in healthy human subjects using a post-stimulus time histogram method. Electrical stimulation of low-threshold afferents of ECR nerves increased the motor neuron excitability in 31 of 76 PT motor units (MUs) in all eight subjects tested, while stimulation of low-threshold afferents of PT nerves increased the motor neuron excitability in 36 of 102 ECR MUs in all 10 subjects. The estimated central synaptic delay was almost equivalent to that of homonymous facilitation. Mechanical stimulation (MS) of ECR facilitated 16 of 30 PT MUs in all five subjects tested, while MS of PT facilitated 17 of 30 ECR MUs in all six subjects. These results suggest excitatory reflex (facilitation) between PT and ECR. Group I afferents should mediate the facilitation through a monosynaptic path.  相似文献   

17.
The Cinderella hypothesis postulates the continuous activity of specific motor units (MUs) during low-level muscle contraction. The MUs may become metabolically overloaded, with the subject developing muscle pain and strain. The hypothesis requires MUs that are active for a time long enough to actually damage muscle fibers. The aim of this study was to determine if there are continuously active MUs in the right trapezius muscle during normal computer work using a computer mouse. Fourteen healthy subjects executed an interactive computer-learning program (ErgoLight) for 30 min. Six-channel intramuscular EMG and two-channel surface EMG signals were recorded from two positions of the trapezius muscle. Decomposition was achieved with automated, multi-channel, long-term decomposition software (EMG-LODEC). In two out of the 14 subjects, three MUs were continuously active throughout the 30 min. Although the majority of the MUs were active during only part of the experimental session, an ordered on-off behavior (e.g. substitution) pattern was not observed. As long-lasting activity was verified in some subjects, the results support the Cinderella hypothesis. However, it cannot be concluded here how long the MUs could stay active. If continuous activity overloads low threshold MUs, the potential exists for selective fibre injuries in low threshold MUs of the trapezius muscle in subjects exposed to long-term computer work.  相似文献   

18.
Principal component analysis (PCA) is routinely used to analyze genome-wide single-nucleotide polymorphism (SNP) data, for detecting population structure and potential outliers. However, the size of SNP datasets has increased immensely in recent years and PCA of large datasets has become a time consuming task. We have developed flashpca, a highly efficient PCA implementation based on randomized algorithms, which delivers identical accuracy in extracting the top principal components compared with existing tools, in substantially less time. We demonstrate the utility of flashpca on both HapMap3 and on a large Immunochip dataset. For the latter, flashpca performed PCA of 15,000 individuals up to 125 times faster than existing tools, with identical results, and PCA of 150,000 individuals using flashpca completed in 4 hours. The increasing size of SNP datasets will make tools such as flashpca essential as traditional approaches will not adequately scale. This approach will also help to scale other applications that leverage PCA or eigen-decomposition to substantially larger datasets.  相似文献   

19.
BackgroundRecent findings have shown that imaging voluntarily activated motor units (MUs) by decomposing ultrasound-based displacement images provides estimates of unfused tetanic signals evoked by spinal motoneurons’ neural discharges (spikes). Two methods have been suggested to estimate its spike trains: band-pass filter (BPM) and Haar wavelet transform (HWM). However, the methods’ optimal parameters and which method performs the best are unknown. This study will answer these questions.MethodHWM and BPM were optimized using simulations. Their performance was evaluated based on simulations and 21 experimental datasets, considering their rate of agreement, spike offset, and spike offset variability to the simulated or experimental spikes.ResultsA range of parameter sets that resulted in the highest possible agreement with simulated spikes was provided. Both methods highly agreed with simulated and experimental spikes, but HWM was a better spike estimation method than BPM because it had a higher agreement, less bias, and less variation (p < 0.001).ConclusionsThe optimized HWM will be an important contributor to further developing the identification and analysis of MUs using imaging, providing indirect access to the neural drive of the spinal cord to the muscle by the unfused tetanic signals.  相似文献   

20.
Increased knee flexion during stance is a common gait deviation in the child with cerebral palsy (CP), with distal hamstring lengthening surgeries being an accepted course of treatment. Post-operatively, improvements in gait kinematics have been reported, however little change is noted in the patterns of muscle activity as portrayed by onset and offset timing in the surface electromyographic (sEMG) signals. Similar analysis based on the frequency content of the sEMG signals has seldom been applied, yet may provide additional insight into changes in muscle activity in response to surgery. The purpose of this study was to determine if changes in the time-frequency characteristics of the sEMG, extracted using wavelet analysis techniques, corresponded to improved gait kinematics observed post-surgical intervention, and whether there existed a relationship between frequency characteristics of the sEMG signals and the type of surgery required to correct gait kinematics. Data were collected from 16 children with typical development (TD) and 17 children with CP pre- and post-surgery. Muscle activity was recorded from the medial hamstring (MH) and vastus lateralis (VL) muscles, processed using the wavelet transform, and analyzed using functional principal component analyses (PCA). Results indicated that frequency differences were present pre-operatively depending if surgery was to be performed bilaterally or involved bone modification. Post-operatively, frequency characteristics of the VL more closely approximated those observed in children with TD, agreeing with the improved gait kinematics. MH characteristics, however, for the surgical groups demonstrated a deviation away for TD reflecting the altered muscle structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号